When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Indeterminate form - Wikipedia

    en.wikipedia.org/wiki/Indeterminate_form

    Indeterminate form is a mathematical expression that can obtain any value depending on circumstances. In calculus, it is usually possible to compute the limit of the sum, difference, product, quotient or power of two functions by taking the corresponding combination of the separate limits of each respective function.

  3. Difference quotient - Wikipedia

    en.wikipedia.org/wiki/Difference_quotient

    Difference quotients may also find relevance in applications involving Time discretization, where the width of the time step is used for the value of h. The difference quotient is sometimes also called the Newton quotient [10] [12] [13] [14] (after Isaac Newton) or Fermat's difference quotient (after Pierre de Fermat). [15]

  4. General Leibniz rule - Wikipedia

    en.wikipedia.org/wiki/General_Leibniz_rule

    The proof of the general Leibniz rule [2]: 68–69 proceeds by induction. Let and be -times differentiable functions.The base case when = claims that: ′ = ′ + ′, which is the usual product rule and is known to be true.

  5. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The classical finite-difference approximations for numerical differentiation are ill-conditioned. However, if is a holomorphic function, real-valued on the real line, which can be evaluated at points in the complex plane near , then there are stable methods.

  6. Discrete calculus - Wikipedia

    en.wikipedia.org/wiki/Discrete_calculus

    Discrete differential calculus is the study of the definition, properties, and applications of the difference quotient of a function. The process of finding the difference quotient is called differentiation. Given a function defined at several points of the real line, the difference quotient at that point is a way of encoding the small-scale (i ...

  7. Symmetry of second derivatives - Wikipedia

    en.wikipedia.org/wiki/Symmetry_of_second_derivatives

    Rather, the limit of difference quotients shows that (,) = (,) =, so the graph = (,) has a horizontal tangent plane at (0, 0), and the partial derivatives , exist and are everywhere continuous. However, the second partial derivatives are not continuous at (0, 0) , and the symmetry fails.

  8. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    The quotient / is not infinitely small; rather it is a real number. The use of infinitesimals in this form was widely criticized, for instance by the famous pamphlet The Analyst by Bishop Berkeley. Augustin-Louis Cauchy defined the differential without appeal to the atomism of Leibniz's infinitesimals.

  9. Symmetric derivative - Wikipedia

    en.wikipedia.org/wiki/Symmetric_derivative

    The expression under the limit is sometimes called the symmetric difference quotient. [3] [4] A function is said to be symmetrically differentiable at a point x if its symmetric derivative exists at that point. If a function is differentiable (in the usual sense) at a point, then it is also symmetrically differentiable, but the converse is not ...