When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Muon-catalyzed fusion - Wikipedia

    en.wikipedia.org/wiki/Muon-catalyzed_fusion

    The first kind of muon–catalyzed fusion to be observed experimentally, by L.W. Alvarez et al., [6] was protium (H or 1 H 1) and deuterium (D or 1 H 2) muon-catalyzed fusion. The fusion rate for p–d (or pd) muon-catalyzed fusion has been estimated to be about a million times slower than the fusion rate for d–t muon-catalyzed fusion. [7 ...

  3. Muon - Wikipedia

    en.wikipedia.org/wiki/Muon

    Muonic heavy hydrogen atoms with a negative muon may undergo nuclear fusion in the process of muon-catalyzed fusion, after the muon may leave the new atom to induce fusion in another hydrogen molecule. This process continues until the negative muon is captured by a helium nucleus, where it remains until it decays.

  4. Category:Nuclear fusion - Wikipedia

    en.wikipedia.org/wiki/Category:Nuclear_fusion

    Articles dealing specifically with using this process to produce useful power are contained in the subcategory Fusion power. Articles about nuclear processes that are speculative or poorly understood (like cold fusion ), or whose potential for power production is remote (like muon-catalyzed fusion ) are kept in the main category.

  5. Nuclear fusion - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fusion

    Muon-catalyzed fusion is a fusion process that occurs at ordinary temperatures. It was studied in detail by Steven Jones in the early 1980s. Net energy production from this reaction has been unsuccessful because of the high energy required to create muons , their short 2.2 μs half-life , and the high chance that a muon will bind to the new ...

  6. Cold fusion - Wikipedia

    en.wikipedia.org/wiki/Cold_fusion

    In muon-catalyzed fusion there are more fusions because the presence of the muon causes deuterium nuclei to be 207 times closer than in ordinary deuterium gas. [138] But deuterium nuclei inside a palladium lattice are further apart than in deuterium gas, and there should be fewer fusion reactions, not more. [133]

  7. Exotic atom - Wikipedia

    en.wikipedia.org/wiki/Exotic_atom

    Muon-catalyzed fusion is a technical application of muonic atoms. Other muonic atoms can be formed when negative muons interact with ordinary matter. [4] The muon in muonic atoms can either decay or get captured by a proton. Muon capture is very important in heavier muonic atoms, but shortens the muon's lifetime from 2.2 μs to only 0.08 μs. [4]

  8. Steven E. Jones - Wikipedia

    en.wikipedia.org/wiki/Steven_E._Jones

    Muon-catalyzed fusion was a field of some interest during the 1980s as a potential energy source; however, its low energy output appears to be unavoidable (because of alpha-muon sticking losses). Jones led a research team that, in 1986, achieved 150 fusions per muon (average), releasing over 2,600 MeV of fusion energy per muon , a record which ...

  9. List of fusion power technologies - Wikipedia

    en.wikipedia.org/wiki/List_of_fusion_power...

    Penning fusion (PFX, LANL) Plasma jets (HyperV, Chantilly) Magnetized target fusion with mechanical compression (General Fusion, Burnaby) Field-reversed colliding beams (Tri-Alpha) Muon-catalyzed fusion (Berkeley, Alvarez) Dense Plasma Focus (Focus fusion, Lawrenceville Plasma Physics, Lerner) Rotating lithium wall (RWE, Maryland)