When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Uranium - Wikipedia

    en.wikipedia.org/wiki/Uranium

    However, because of the low abundance of uranium-235 in natural uranium (which is overwhelmingly uranium-238), uranium needs to undergo enrichment so that enough uranium-235 is present. Uranium-238 is fissionable by fast neutrons and is fertile , meaning it can be transmuted to fissile plutonium-239 in a nuclear reactor .

  3. Critical mass - Wikipedia

    en.wikipedia.org/wiki/Critical_mass

    An ideal mass will become subcritical if allowed to expand or conversely the same mass will become supercritical if compressed. Changing the temperature may also change the density; however, the effect on critical mass is then complicated by temperature effects (see "Changing the temperature") and by whether the material expands or contracts ...

  4. Nuclear chemistry - Wikipedia

    en.wikipedia.org/wiki/Nuclear_chemistry

    Nuclear chemistry is the sub-field of chemistry dealing with radioactivity, nuclear processes, and transformations in the nuclei of atoms, such as nuclear transmutation and nuclear properties. It is the chemistry of radioactive elements such as the actinides , radium and radon together with the chemistry associated with equipment (such as ...

  5. Enriched uranium - Wikipedia

    en.wikipedia.org/wiki/Enriched_uranium

    Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235 U) has been increased through the process of isotope separation.Naturally occurring uranium is composed of three major isotopes: uranium-238 (238 U with 99.2732–99.2752% natural abundance), uranium-235 (235 U, 0.7198–0.7210%), and uranium-234 (234 U, 0.0049–0.0059%).

  6. Nuclear transmutation - Wikipedia

    en.wikipedia.org/wiki/Nuclear_transmutation

    Most natural transmutation on the Earth today is mediated by cosmic rays (such as production of carbon-14) and by the radioactive decay of radioactive primordial nuclides left over from the initial formation of the Solar System (such as potassium-40, uranium and thorium), plus the radioactive decay of products of these nuclides (radium, radon ...

  7. Uranium-238 - Wikipedia

    en.wikipedia.org/wiki/Uranium-238

    In a fission nuclear reactor, uranium-238 can be used to generate plutonium-239, which itself can be used in a nuclear weapon or as a nuclear-reactor fuel supply. In a typical nuclear reactor, up to one-third of the generated power comes from the fission of 239 Pu, which is not supplied as a fuel to the reactor, but rather, produced from 238 U. [5] A certain amount of production of 239

  8. Isotopes of uranium - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_uranium

    Uranium-235 makes up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a fission chain reaction. It is the only fissile isotope that is a primordial nuclide or found in significant quantity in nature. Uranium-235 has a half-life of 703.8 million years.

  9. Radiochemistry - Wikipedia

    en.wikipedia.org/wiki/Radiochemistry

    Radiochemistry is the chemistry of radioactive materials, where radioactive isotopes of elements are used to study the properties and chemical reactions of non-radioactive isotopes (often within radiochemistry the absence of radioactivity leads to a substance being described as being inactive as the isotopes are stable).