Search results
Results From The WOW.Com Content Network
It is stable below 13.2 °C (55.8 °F) and is brittle. α-tin has a diamond cubic crystal structure, as do diamond and silicon. α-tin does not have metallic properties because its atoms form a covalent structure in which electrons cannot move freely. α-tin is a dull-gray powdery material with no common uses other than specialized ...
Titanium nitride (TiN; sometimes known as tinite) is an extremely hard ceramic material, often used as a physical vapor deposition (PVD) coating on titanium alloys, steel, carbide, and aluminium components to improve the substrate's surface properties. Applied as a thin coating, TiN is used to harden and protect cutting and sliding surfaces ...
Tin(IV) oxide, also known as stannic oxide, is the inorganic compound with the formula SnO 2. The mineral form of SnO 2 is called cassiterite , and this is the main ore of tin . [ 9 ] With many other names, this oxide of tin is an important material in tin chemistry.
Titanium nitride (TiN) is a refractory solid exhibiting extreme hardness, thermal/electrical conductivity, and a high melting point. [46] TiN has a hardness equivalent to sapphire and carborundum (9.0 on the Mohs scale ), [ 47 ] and is often used to coat cutting tools, such as drill bits . [ 48 ]
Pewter (/ ˈ p juː t ər /) is a malleable metal alloy consisting of tin (85–99%), antimony (approximately 5–10%), copper (2%), bismuth, and sometimes silver. [1] In the past, it was an alloy of tin and lead, but most modern pewter, in order to prevent lead poisoning, is not made with lead.
Tin, for example, has two allotropes: tetragonal "white" β-tin and cubic "grey" α-tin. White tin is a very shiny, ductile and malleable metal. It is the stable form at or above room temperature and has an electrical conductivity of 9.17 × 10 4 S·cm −1 (~1/6th that of copper). [510]
Tin and lead both are metals, while flerovium is a synthetic, radioactive (its half life is very short, only 1.9 seconds) element that may have a few noble gas-like properties, though it is still most likely a post-transition metal. Tin and lead are both capable of forming +2 ions.
Tin extraction and use can be dated to the beginning of the Bronze Age around 3000 BC, during which copper objects formed from polymetallic ores had different physical properties. [4] The earliest bronze objects had tin or arsenic content of less than 2% and are therefore believed to be the result of unintentional alloying due to trace metal ...