Search results
Results From The WOW.Com Content Network
That model calculates an effective radiation dose, measured in units of rem, which is more representative of the stochastic risk than the absorbed dose in rad. In most power plant scenarios, where the radiation environment is dominated by X-or gamma rays applied uniformly to the whole body, 1 rad of absorbed dose gives 1 rem of effective dose. [5]
The absorbed dose, measured in rad, is a better indicator of ARS. [3]: 592–593 A rem is a large dose of radiation, so the millirem (mrem), which is one thousandth of a rem, is often used for the dosages commonly encountered, such as the amount of radiation received from medical x-rays and background sources.
Recognized effects of higher acute radiation doses are described in more detail in the article on radiation poisoning.Although the International System of Units (SI) defines the sievert (Sv) as the unit of radiation dose equivalent, chronic radiation levels and standards are still often given in units of millirems (mrem), where 1 mrem equals 1/1,000 of a rem and 1 rem equals 0.01 Sv.
In 1953 the International Commission on Radiation Units and Measurements (ICRU) recommended the rad, equal to 100 erg/g, as the unit of measure of the new radiation quantity absorbed dose. The rad was expressed in coherent cgs units. [5] In 1975 the unit gray was named as the SI unit of absorbed dose. One gray is equal to 1 J/kg (i.e. 100 rad).
Geiger-Müller counter with dual counts/dose rate display measuring a "point source". The dose per count is known for this specific instrument by calibration. The count rates of cps and cpm are generally accepted and convenient practical rate measurements. They are not SI units, but are de facto radiological units of measure in widespread use.
Absorbed dose is a dose quantity which is the measure of the energy deposited in matter by ionizing radiation per unit mass. Absorbed dose is used in the calculation of dose uptake in living tissue in both radiation protection (reduction of harmful effects), and radiology (potential beneficial effects, for example in cancer treatment).
Radiation dosimetry in the fields of health physics and radiation protection is the measurement, calculation and assessment of the ionizing radiation dose absorbed by an object, usually the human body. This applies both internally, due to ingested or inhaled radioactive substances, or externally due to irradiation by sources of radiation.
In diagnostic radiology, the F-factor is the conversion factor between exposure to ionizing radiation and the absorbed dose from that radiation. In other words, it converts between the amount of ionization in air (roentgens or, in SI units, coulombs per kilogram of absorber material) and the absorbed dose in air (rads or grays).