Search results
Results From The WOW.Com Content Network
The tangent, normal, and binormal unit vectors, often called T, N, and B, or collectively the Frenet–Serret frame (TNB frame or TNB basis), together form an orthonormal basis that spans, and are defined as follows: T is the unit vector tangent to the curve, pointing in the direction of motion.
In mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in R n. More generally, tangent vectors are elements of a tangent space of a differentiable manifold. Tangent vectors can also be described in terms of ...
If t = s is the natural parameter, then the tangent vector has unit length. The formula simplifies: = ′ (). The unit tangent vector determines the orientation of the curve, or the forward direction, corresponding to the increasing values of the parameter.
In polar coordinates, the polar tangential angle is defined as the angle between the tangent line to the curve at the given point and ray from the origin to the point. [6] If ψ denotes the polar tangential angle, then ψ = φ − θ, where φ is as above and θ is, as usual, the polar angle.
Illustration of tangential and normal components of a vector to a surface. In mathematics, given a vector at a point on a curve, that vector can be decomposed uniquely as a sum of two vectors, one tangent to the curve, called the tangential component of the vector, and another one perpendicular to the curve, called the normal component of the vector.
Given a tangential vector field X and a tangent vector Y to S at p, the covariant derivative ∇ Y X is a certain tangent vector to S at p. Consequently, if X and Y are both tangential vector fields, then ∇ Y X can also be regarded as a tangential vector field; iteratively, if X , Y , and Z are tangential vector fields, the one may compute ...
has a length equal to one and is thus a unit tangent vector. If the curve is twice differentiable, that is, if the second derivatives of x and y exist, then the derivative of T(s) exists. This vector is normal to the curve, its length is the curvature κ(s), and it is oriented toward the center of curvature. That is,
Developing the equation for , and grouping the terms in and , we obtain ˙ + ˙ = ¨ + ¨ = ˙ + ˙ Denoting =, the first equation means that is orthogonal to the unit tangent vector at : = The second relation means that = where = = ˙ + ˙ [¨ ¨] is the curvature vector.