Search results
Results From The WOW.Com Content Network
A linked list is a sequence of nodes that contain two fields: data (an integer value here as an example) and a link to the next node. The last node is linked to a terminator used to signify the end of the list. In computer science, a linked list is a
A singly-linked list structure, implementing a list with three integer elements. The term list is also used for several concrete data structures that can be used to implement abstract lists, especially linked lists and arrays. In some contexts, such as in Lisp programming, the term list may refer specifically to a linked list rather than an array.
This is a list of well-known data structures. For a wider list of terms, see list of terms relating to algorithms and data structures. For a comparison of running times for a subset of this list see comparison of data structures.
Perhaps the simplest persistent data structure is the singly linked list or cons-based list, a simple list of objects formed by each carrying a reference to the next in the list. This is persistent because the tail of the list can be taken, meaning the last k items for some k , and new nodes can be added in front of it.
A data structure known as a hash table.. In computer science, a data structure is a data organization and storage format that is usually chosen for efficient access to data. [1] [2] [3] More precisely, a data structure is a collection of data values, the relationships among them, and the functions or operations that can be applied to the data, [4] i.e., it is an algebraic structure about data.
The first and last nodes of a doubly linked list for all practical applications are immediately accessible (i.e., accessible without traversal, and usually called head and tail) and therefore allow traversal of the list from the beginning or end of the list, respectively: e.g., traversing the list from beginning to end, or from end to beginning, in a search of the list for a node with specific ...
A non-blocking linked list is an example of non-blocking data structures designed to implement a linked list in shared memory using synchronization primitives: Compare-and-swap; Fetch-and-add; Load-link/store-conditional; Several strategies for implementing non-blocking lists have been suggested.
Linked list implementations, especially one of a circular, doubly-linked list, can be simplified remarkably using a sentinel node to demarcate the beginning and end of the list. The list starts out with a single node, the sentinel node which has the next and previous pointers point to itself. This condition determines if the list is empty.