Search results
Results From The WOW.Com Content Network
In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a relation on the set of natural numbers ; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3 ), and likewise between 3 and 4 (denoted as 3 < 4 ), but not between the ...
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
In mathematics, a presentation is one method of specifying a group.A presentation of a group G comprises a set S of generators—so that every element of the group can be written as a product of powers of some of these generators—and a set R of relations among those generators.
In the mathematics of binary relations, the composition of relations is the forming of a new binary relation R ; S from two given binary relations R and S.In the calculus of relations, the composition of relations is called relative multiplication, [1] and its result is called a relative product.
In mathematics and abstract algebra, a relation algebra is a residuated Boolean algebra expanded with an involution called converse, a unary operation.The motivating example of a relation algebra is the algebra 2 X 2 of all binary relations on a set X, that is, subsets of the cartesian square X 2, with R•S interpreted as the usual composition of binary relations R and S, and with the ...
A relation R is called intransitive if it is not transitive, that is, if xRy and yRz, but not xRz, for some x, y, z. In contrast, a relation R is called antitransitive if xRy and yRz always implies that xRz does not hold. For example, the relation defined by xRy if xy is an even number is intransitive, [13] but not antitransitive. [14]
A finitary or n-ary relation is a set of n-tuples. Specific types of relations include: Relation (mathematics) (an elementary treatment of binary relations) Binary relation (or diadic relation – a more in-depth treatment of binary relations) Equivalence relation; Homogeneous relation; Reflexive relation; Serial relation
In mathematics, a finitary relation over a sequence of sets X 1, ..., X n is a subset of the Cartesian product X 1 × ... × X n; that is, it is a set of n-tuples (x 1, ..., x n), each being a sequence of elements x i in the corresponding X i. [1] [2] [3] Typically, the relation describes a possible connection between the elements of an n-tuple.