When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    Word2vec is a technique in natural language processing (NLP) for obtaining vector representations of words. These vectors capture information about the meaning of the word based on the surrounding words.

  3. Bag-of-words model - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model

    The BoW representation of a text removes all word ordering. For example, the BoW representation of "man bites dog" and "dog bites man" are the same, so any algorithm that operates with a BoW representation of text must treat them in the same way. Despite this lack of syntax or grammar, BoW representation is fast and may be sufficient for simple ...

  4. Sentiment analysis - Wikipedia

    en.wikipedia.org/wiki/Sentiment_analysis

    Subjective and objective identification, emerging subtasks of sentiment analysis to use syntactic, semantic features, and machine learning knowledge to identify if a sentence or document contains facts or opinions. Awareness of recognizing factual and opinions is not recent, having possibly first presented by Carbonell at Yale University in 1979.

  5. Seq2seq - Wikipedia

    en.wikipedia.org/wiki/Seq2seq

    Shannon's diagram of a general communications system, showing the process by which a message sent becomes the message received (possibly corrupted by noise). seq2seq is an approach to machine translation (or more generally, sequence transduction) with roots in information theory, where communication is understood as an encode-transmit-decode process, and machine translation can be studied as a ...

  6. Bag-of-words model in computer vision - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model_in...

    Pyramid match kernel is newly developed one based on the BoW model. The local feature approach of using BoW model representation learnt by machine learning classifiers with different kernels (e.g., EMD-kernel and kernel) has been vastly tested in the area of texture and object recognition. [12]

  7. Semantic parsing - Wikipedia

    en.wikipedia.org/wiki/Semantic_parsing

    Examples of these insights include sentiment analysis, topic modelling, and trend analysis. Question Answering Systems: Found in systems such as IBM Watson, these systems assist in comprehending and analyzing natural language queries in order to deliver precise responses. They are particularly helpful in areas such as customer service and ...

  8. Multimodal sentiment analysis - Wikipedia

    en.wikipedia.org/wiki/Multimodal_sentiment_analysis

    Multimodal sentiment analysis also plays an important role in the advancement of virtual assistants through the application of natural language processing (NLP) and machine learning techniques. [5] In the healthcare domain, multimodal sentiment analysis can be utilized to detect certain medical conditions such as stress, anxiety, or depression. [8]

  9. Word-sense disambiguation - Wikipedia

    en.wikipedia.org/wiki/Word-sense_disambiguation

    Many techniques have been researched, including dictionary-based methods that use the knowledge encoded in lexical resources, supervised machine learning methods in which a classifier is trained for each distinct word on a corpus of manually sense-annotated examples, and completely unsupervised methods that cluster occurrences of words, thereby ...