Search results
Results From The WOW.Com Content Network
The representing function g S is the impulse response of the transformation S. A more precise version of the theorem quoted above requires specifying the class of functions on which the convolution is defined, and also requires assuming in addition that S must be a continuous linear operator with respect to the appropriate topology.
The graph of the Dirac comb function is an infinite series of Dirac delta functions spaced at intervals of T. In mathematics, a Dirac comb (also known as sha function, impulse train or sampling function) is a periodic function with the formula := = for some given period . [1]
The impulse response can be computed to any desired degree of accuracy by choosing a suitable approximation for δ, and once it is known, it characterizes the system completely. See LTI system theory § Impulse response and convolution. The inverse Fourier transform of the tempered distribution f(ξ) = 1 is the delta function.
The impulse response of a linear transformation is the image of Dirac's delta function under the transformation, analogous to the fundamental solution of a partial differential operator. It is usually easier to analyze systems using transfer functions as opposed to impulse responses. The transfer function is the Laplace transform of the impulse ...
where x is an input sequence, y j is a sequence from output j, h j is an impulse response for output j and denotes convolution. A convolutional encoder is a discrete linear time-invariant system . Every output of an encoder can be described by its own transfer function , which is closely related to the generator polynomial.
The result is a finite impulse response filter whose frequency response is modified from that of the IIR filter. Multiplying the infinite impulse by the window function in the time domain results in the frequency response of the IIR being convolved with the Fourier transform (or DTFT) of the window function. If the window's main lobe is narrow ...
A more general term for the PSF is the system's impulse response; the PSF is the impulse response or impulse response function (IRF) of a focused optical imaging system. The PSF in many contexts can be thought of as the shapeless blob in an image that should represent a single point object. We can consider this as a spatial impulse response ...
To calculate the optical broad-beam response, the impulse response of a pencil beam is convolved with the beam function. As shown by Equation 4, this is a 2-D convolution. To calculate the response of a light beam on a plane perpendicular to the z axis, the beam function (represented by a b × b matrix) is convolved with the impulse response on ...