When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Scott's rule - Wikipedia

    en.wikipedia.org/wiki/Scott's_Rule

    10000 samples from a normal distribution binned using different rules. The Scott rule uses 48 bins, the Terrell-Scott rule uses 28 and Sturges's rule 15. This rule is also called the oversmoothed rule [ 7 ] or the Rice rule , [ 8 ] so called because both authors worked at Rice University .

  3. Sum of normally distributed random variables - Wikipedia

    en.wikipedia.org/wiki/Sum_of_normally...

    This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]

  4. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The simplest case of a normal distribution is known as the standard normal distribution or unit normal distribution. This is a special case when μ = 0 {\textstyle \mu =0} and σ 2 = 1 {\textstyle \sigma ^{2}=1} , and it is described by this probability density function (or density): φ ( z ) = e − z 2 2 2 π . {\displaystyle \varphi (z ...

  5. Box–Muller transform - Wikipedia

    en.wikipedia.org/wiki/Box–Muller_transform

    The basic form as given by Box and Muller takes two samples from the uniform distribution on the interval (0,1) and maps them to two standard, normally distributed samples. The polar form takes two samples from a different interval, [−1,+1], and maps them to two normally distributed samples without the use of sine or cosine functions.

  6. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively.

  7. Inverse transform sampling - Wikipedia

    en.wikipedia.org/wiki/Inverse_transform_sampling

    Inverse transform sampling (also known as inversion sampling, the inverse probability integral transform, the inverse transformation method, or the Smirnov transform) is a basic method for pseudo-random number sampling, i.e., for generating sample numbers at random from any probability distribution given its cumulative distribution function.

  8. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    As the sample size n grows sufficiently large, the distribution of ^ will be closely approximated by a normal distribution. [1] Using this and the Wald method for the binomial distribution , yields a confidence interval, with Z representing the standard Z-score for the desired confidence level (e.g., 1.96 for a 95% confidence interval), in the ...

  9. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    The fact that two random variables and both have a normal distribution does not imply that the pair (,) has a joint normal distribution. A simple example is one in which X has a normal distribution with expected value 0 and variance 1, and = if | | > and = if | | <, where >. There are similar counterexamples for more than two random variables.