When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Residual neural network - Wikipedia

    en.wikipedia.org/wiki/Residual_neural_network

    A residual neural network (also referred to as a residual network or ResNet) [1] is a deep learning architecture in which the layers learn residual functions with reference to the layer inputs. It was developed in 2015 for image recognition , and won the ImageNet Large Scale Visual Recognition Challenge ( ILSVRC ) of that year.

  3. Seq2seq - Wikipedia

    en.wikipedia.org/wiki/Seq2seq

    Shannon's diagram of a general communications system, showing the process by which a message sent becomes the message received (possibly corrupted by noise). seq2seq is an approach to machine translation (or more generally, sequence transduction) with roots in information theory, where communication is understood as an encode-transmit-decode process, and machine translation can be studied as a ...

  4. Inception (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Inception_(deep_learning...

    Inception [1] is a family of convolutional neural network (CNN) for computer vision, introduced by researchers at Google in 2014 as GoogLeNet (later renamed Inception v1).). The series was historically important as an early CNN that separates the stem (data ingest), body (data processing), and head (prediction), an architectural design that persists in all modern

  5. DeepDream - Wikipedia

    en.wikipedia.org/wiki/DeepDream

    DeepDream is a computer vision program created by Google engineer Alexander Mordvintsev that uses a convolutional neural network to find and enhance patterns in images via algorithmic pareidolia, thus creating a dream-like appearance reminiscent of a psychedelic experience in the deliberately overprocessed images.

  6. LeNet - Wikipedia

    en.wikipedia.org/wiki/LeNet

    LeNet-5 architecture (overview). LeNet is a series of convolutional neural network structure proposed by LeCun et al. [1].The earliest version, LeNet-1, was trained in 1989.In general, when "LeNet" is referred to without a number, it refers to LeNet-5 (1998), the most well-known version.

  7. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    AutoDifferentiation is the process of automatically calculating the gradient vector of a model with respect to each of its parameters. With this feature, TensorFlow can automatically compute the gradients for the parameters in a model, which is useful to algorithms such as backpropagation which require gradients to optimize performance. [34]

  8. Mixture of experts - Wikipedia

    en.wikipedia.org/wiki/Mixture_of_experts

    Specifically, consider a language model that given a previous text , predicts the next word . The network encodes the text into a vector v c {\displaystyle v_{c}} , and predicts the probability distribution of the next word as S o f t m a x ( v c W ) {\displaystyle \mathrm {Softmax} (v_{c}W)} for an embedding matrix W {\displaystyle W} .

  9. Google Colab - Wikipedia

    en.wikipedia.org/?title=Google_Colab&redirect=no

    This page was last edited on 26 November 2021, at 16:57 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.