Search results
Results From The WOW.Com Content Network
XOR represents the inequality function, i.e., the output is true if the inputs are not alike otherwise the output is false. A way to remember XOR is "must have one or the other but not both". An XOR gate may serve as a "programmable inverter" in which one input determines whether to invert the other input, or to simply pass it along with no change.
In the C programming language, operations can be performed on a bit level using bitwise operators. Bitwise operations are contrasted by byte-level operations which characterize the bitwise operators' logical counterparts, the AND, OR, NOT operators. Instead of performing on individual bits, byte-level operators perform on strings of eight bits ...
In simple threshold-activated artificial neural networks, modeling the XOR function requires a second layer because XOR is not a linearly separable function. Similarly, XOR can be used in generating entropy pools for hardware random number generators. The XOR operation preserves randomness, meaning that a random bit XORed with a non-random bit ...
Bitwise XOR of 4-bit integers. A bitwise XOR is a binary operation that takes two bit patterns of equal length and performs the logical exclusive OR operation on each pair of corresponding bits. The result in each position is 1 if only one of the bits is 1, but will be 0 if both are 0 or both are 1.
Using the XOR swap algorithm to exchange nibbles between variables without the use of temporary storage. In computer programming, the exclusive or swap (sometimes shortened to XOR swap) is an algorithm that uses the exclusive or bitwise operation to swap the values of two variables without using the temporary variable which is normally required.
In computing, a linear-feedback shift register (LFSR) is a shift register whose input bit is a linear function of its previous state. The most commonly used linear function of single bits is exclusive-or (XOR). Thus, an LFSR is most often a shift register whose input bit is driven by the XOR of some bits of the overall shift register value.
In Boolean algebra, a parity function is a Boolean function whose value is one if and only if the input vector has an odd number of ones. The parity function of two inputs is also known as the XOR function. The parity function is notable for its role in theoretical investigation of circuit complexity of Boolean functions.
If the predecessor had been R, the P(=R) and R cancel, leaving C⊕L. In each case, the result is the XOR of the current address with the next address. XOR of this with the current address in R1 leaves the next address. R2 is left with the requisite XOR pair of the (now) current address and the predecessor.