Search results
Results From The WOW.Com Content Network
In cryptography, a block cipher mode of operation is an algorithm that uses a block cipher to provide information security such as confidentiality or authenticity. [1] A block cipher by itself is only suitable for the secure cryptographic transformation (encryption or decryption) of one fixed-length group of bits called a block. [2]
Decrypt the second-to-last ciphertext block using ECB mode. C n = C n || Tail (D n, B−M). Pad the ciphertext to the nearest multiple of the block size using the last B−M bits of block cipher decryption of the second-to-last ciphertext block. Swap the last two ciphertext blocks. Decrypt the (modified) ciphertext using the standard CBC mode.
CCM mode (counter with cipher block chaining message authentication code; counter with CBC-MAC) is a mode of operation for cryptographic block ciphers. It is an authenticated encryption algorithm designed to provide both authentication and confidentiality. CCM mode is only defined for block ciphers with a block length of 128 bits. [1] [2]
GCM uses a block cipher with block size 128 bits (commonly AES-128) operated in counter mode for encryption, and uses arithmetic in the Galois field GF(2 128) to compute the authentication tag; hence the name. Galois Message Authentication Code (GMAC) is an authentication-only variant of the GCM which can form an incremental message ...
A block cipher consists of two paired algorithms, one for encryption, E, and the other for decryption, D. [1] Both algorithms accept two inputs: an input block of size n bits and a key of size k bits; and both yield an n-bit output block. The decryption algorithm D is defined to be the inverse function of encryption, i.e., D = E −1.
CCMP uses CCM that combines CTR mode for data confidentiality and cipher block chaining message authentication code (CBC-MAC) for authentication and integrity. CCM protects the integrity of both the MPDU data field and selected portions of the IEEE 802.11 MPDU header. CCMP is based on AES processing and uses a 128-bit key and a 128-bit block size.
OCB mode was designed to provide both message authentication and privacy. It is essentially a scheme for integrating a message authentication code (MAC) into the operation of a block cipher. In this way, OCB mode avoids the need to use two systems: a MAC for authentication and encryption for confidentiality. This results in lower computational ...
A large number of block ciphers use the scheme, including the US Data Encryption Standard, the Soviet/Russian GOST and the more recent Blowfish and Twofish ciphers. In a Feistel cipher, encryption and decryption are very similar operations, and both consist of iteratively running a function called a " round function " a fixed number of times.