Search results
Results From The WOW.Com Content Network
log 10 of anydrous ammonia vapor pressure. Uses formula shown below. ... where P is pressure in kPa, and T is temperature in kelvins; A = 6.67956, B = 1002.711, ...
It is however easy to convert the parameters to different pressure and temperature units. For switching from degrees Celsius to kelvin it is sufficient to subtract 273.15 from the C parameter. For switching from millimeters of mercury to pascals it is sufficient to add the common logarithm of the factor between both units to the A parameter:
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
However, a common temperature and pressure in use by NIST for thermodynamic experiments is 298.15 K (25 °C, 77 °F) and 1 bar (14.5038 psi, 100 kPa). [ 4 ] [ 5 ] NIST also uses 15 °C (288.15 K, 59 °F) for the temperature compensation of refined petroleum products, despite noting that these two values are not exactly consistent with each other.
A Assuming an altitude of 194 metres above mean sea level (the worldwide median altitude of human habitation), an indoor temperature of 23 °C, a dewpoint of 9 °C (40.85% relative humidity), and 760 mmHg sea level–corrected barometric pressure (molar water vapor content = 1.16%). B Calculated values *Derived data by calculation.
To convert a delta temperature from degrees Fahrenheit to degrees Celsius, the formula is {ΔT} °F = 9 / 5 {ΔT} °C. To convert a delta temperature from degrees Celsius to kelvin, it is 1:1 ({ΔT} °C = {ΔT} K).
DePriester Charts provide an efficient method to find the vapor-liquid equilibrium ratios for different substances at different conditions of pressure and temperature. The original chart was put forth by C.L. DePriester in an article in Chemical Engineering Progress in 1953.
Liquid ammonia has a very high standard enthalpy change of vapourization (23.5 kJ/mol; [28] for comparison, water's is 40.65 kJ/mol, methane 8.19 kJ/mol and phosphine 14.6 kJ/mol) and can be transported in pressurized or refrigerated vessels; however, at standard temperature and pressure liquid anhydrous ammonia will vaporize.