When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Geometric progression - Wikipedia

    en.wikipedia.org/wiki/Geometric_progression

    Diagram illustrating three basic geometric sequences of the pattern 1(r n−1) up to 6 iterations deep.The first block is a unit block and the dashed line represents the infinite sum of the sequence, a number that it will forever approach but never touch: 2, 3/2, and 4/3 respectively.

  3. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    where is the number of terms in the progression and is the common difference between terms. The formula is essentially the same as the formula for the standard deviation of a discrete uniform distribution, interpreting the arithmetic progression as a set of equally probable outcomes.

  4. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.

  5. nth-term test - Wikipedia

    en.wikipedia.org/wiki/Nth-term_test

    In mathematics, the nth-term test for divergence [1] is a simple test for the divergence of an infinite series: If lim n → ∞ a n ≠ 0 {\displaystyle \lim _{n\to \infty }a_{n}\neq 0} or if the limit does not exist, then ∑ n = 1 ∞ a n {\displaystyle \sum _{n=1}^{\infty }a_{n}} diverges.

  6. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .

  7. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    Because the set of primes is a computably enumerable set, by Matiyasevich's theorem, it can be obtained from a system of Diophantine equations. Jones et al. (1976) found an explicit set of 14 Diophantine equations in 26 variables, such that a given number k + 2 is prime if and only if that system has a solution in nonnegative integers: [7]

  8. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    Fibonacci numbers are also strongly related to the golden ratio: Binet's formula expresses the n-th Fibonacci number in terms of n and the golden ratio, and implies that the ratio of two consecutive Fibonacci numbers tends to the golden ratio as n increases.

  9. Integer sequence - Wikipedia

    en.wikipedia.org/wiki/Integer_sequence

    Beginning of the Fibonacci sequence on a building in Gothenburg. In mathematics, an integer sequence is a sequence (i.e., an ordered list) of integers.. An integer sequence may be specified explicitly by giving a formula for its nth term, or implicitly by giving a relationship between its terms.