Search results
Results From The WOW.Com Content Network
Bayesian statistics are based on a different philosophical approach for proof of inference.The mathematical formula for Bayes's theorem is: [|] = [|] [] []The formula is read as the probability of the parameter (or hypothesis =h, as used in the notation on axioms) “given” the data (or empirical observation), where the horizontal bar refers to "given".
Surrogate data testing [1] (or the method of surrogate data) is a statistical proof by contradiction technique similar to permutation tests [2] and parametric bootstrapping.It is used to detect non-linearity in a time series. [3]
The test procedure due to M.S.E (Mean Square Error/Estimator) Bartlett test is represented here. This test procedure is based on the statistic whose sampling distribution is approximately a Chi-Square distribution with ( k − 1) degrees of freedom, where k is the number of random samples, which may vary in size and are each drawn from ...
A graphical representation of a partially built propositional tableau. In proof theory, the semantic tableau [1] (/ t æ ˈ b l oʊ, ˈ t æ b l oʊ /; plural: tableaux), also called an analytic tableau, [2] truth tree, [1] or simply tree, [2] is a decision procedure for sentential and related logics, and a proof procedure for formulae of first-order logic. [1]
A permutation test (also called re-randomization test or shuffle test) is an exact statistical hypothesis test making use of the proof by contradiction. A permutation test involves two or more samples. The null hypothesis is that all samples come from the same distribution : =.
Geographic information systems such as GIS, GPS, and GNSS, have become so widespread that the term "ground truth" has taken on special meaning in that context. If the location coordinates returned by a location method such as GPS are an estimate of a location, then the "ground truth" is the actual location on Earth.
A proof procedure for a logic is complete if it produces a proof for each provable statement. The theorems of logical systems are typically recursively enumerable, which implies the existence of a complete but usually extremely inefficient proof procedure; however, a proof procedure is only of interest if it is reasonably efficient.
The Šidák correction is derived by assuming that the individual tests are independent.Let the significance threshold for each test be ; then the probability that at least one of the tests is significant under this threshold is (1 - the probability that none of them are significant).