When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Specific heat capacity - Wikipedia

    en.wikipedia.org/wiki/Specific_heat_capacity

    Specific heat capacity often varies with temperature, and is different for each state of matter. Liquid water has one of the highest specific heat capacities among common substances, about 4184 J⋅kg −1 ⋅K −1 at 20 °C; but that of ice, just below 0 °C, is only 2093 J⋅kg −1 ⋅K −1.

  3. Heat capacity ratio - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity_ratio

    In thermal physics and thermodynamics, the heat capacity ratio, also known as the adiabatic index, the ratio of specific heats, or Laplace's coefficient, is the ratio of the heat capacity at constant pressure (C P) to heat capacity at constant volume (C V).

  4. Heat capacity - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity

    The heat capacity of an object, denoted by , is the limit =, where is the amount of heat that must be added to the object (of mass M) in order to raise its temperature by . The value of this parameter usually varies considerably depending on the starting temperature T {\displaystyle T} of the object and the pressure p {\displaystyle p} applied ...

  5. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    The steady-state heat equation for a volume that contains a heat source (the inhomogeneous case), is the Poisson's equation: − k ∇ 2 u = q {\displaystyle -k\nabla ^{2}u=q} where u is the temperature , k is the thermal conductivity and q is the rate of heat generation per unit volume.

  6. Volumetric heat capacity - Wikipedia

    en.wikipedia.org/wiki/Volumetric_heat_capacity

    An additional factor for all types of specific heat capacities (including molar specific heats) then further reflects degrees of freedom available to the atoms composing the substance, at various temperatures. For most liquids, the volumetric heat capacity is narrower, for example octane at 1.64 MJ⋅K −1 ⋅m −3 or ethanol at 1.9. This ...

  7. Molar heat capacity - Wikipedia

    en.wikipedia.org/wiki/Molar_heat_capacity

    Since the molar heat capacity of a substance is the specific heat c times the molar mass of the substance M/N its numerical value is generally smaller than that of the specific heat. Paraffin wax, for example, has a specific heat of about 2500 J⋅K −1 ⋅kg −1 but a molar heat capacity of about 600 J⋅K −1 ⋅mol −1.

  8. Debye model - Wikipedia

    en.wikipedia.org/wiki/Debye_model

    Reduced specific heat for KCl, TiO2, and graphite, compared with the Debye theory based on elastic measurements (solid lines) [1]. In thermodynamics and solid-state physics, the Debye model is a method developed by Peter Debye in 1912 to estimate phonon contribution to the specific heat (heat capacity) in a solid. [2]

  9. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera). [13]