Search results
Results From The WOW.Com Content Network
In mathematical optimization, constrained optimization (in some contexts called constraint optimization) is the process of optimizing an objective function with respect to some variables in the presence of constraints on those variables.
In mathematics, a constraint is a condition of an optimization problem that the solution must satisfy. There are several types of constraints—primarily equality constraints, inequality constraints, and integer constraints. The set of candidate solutions that satisfy all constraints is called the feasible set. [1]
Sequential quadratic programming: A Newton-based method for small-medium scale constrained problems. Some versions can handle large-dimensional problems. Interior point methods: This is a large class of methods for constrained optimization, some of which use only (sub)gradient information and others of which require the evaluation of Hessians.
In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). [1]
Consider the following nonlinear optimization problem in standard form: . minimize () subject to (),() =where is the optimization variable chosen from a convex subset of , is the objective or utility function, (=, …,) are the inequality constraint functions and (=, …,) are the equality constraint functions.
Optimization problems can be divided into two categories, depending on whether the variables are continuous or discrete: An optimization problem with discrete variables is known as a discrete optimization , in which an object such as an integer , permutation or graph must be found from a countable set .
In constrained optimization, a field of mathematics, a barrier function is a continuous function whose value increases to infinity as its argument approaches the boundary of the feasible region of an optimization problem.
A commercial optimization solver for linear programming, non-linear programming, mixed integer linear programming, convex quadratic programming, convex quadratically constrained quadratic programming, second-order cone programming and their mixed integer counterparts. AMPL: CPLEX: Popular solver with an API for several programming languages.