Search results
Results From The WOW.Com Content Network
Calculus is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the calculus of infinitesimals", it has two major branches, differential calculus and integral calculus.
Infinitesimal numbers were introduced in the development of calculus, in which the derivative was first conceived as a ratio of two infinitesimal quantities. This definition was not rigorously formalized. As calculus developed further, infinitesimals were replaced by limits, which can be calculated using the standard real numbers.
Recently, Katz & Katz [8] give a positive account of a calculus course based on Keisler's book. O'Donovan also described his experience teaching calculus using infinitesimals. His initial point of view was positive, [9] but later he found pedagogical difficulties with the approach to nonstandard calculus taken by this text and others. [10]
In these limits, the infinitesimal change is often denoted or .If () is differentiable at , (+) = ′ ().This is the definition of the derivative.All differentiation rules can also be reframed as rules involving limits.
Note that the very notation "" used to denote any infinitesimal is consistent with the above definition of the operator , for if one interprets (as is commonly done) to be the function () =, then for every (,) the differential () will equal the infinitesimal .
Leibniz used the principle to extend concepts such as arithmetic operations from ordinary numbers to infinitesimals, laying the groundwork for infinitesimal calculus. The transfer principle provides a mathematical implementation of the law of continuity in the context of the hyperreal numbers .
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Following Abraham Robinson's work resolving what had long been thought to be inherent logical contradictions in the literal interpretation of Leibniz's notation that Leibniz himself had proposed, that is, interpreting "dx" as literally representing an infinitesimally small quantity, Keisler published Elementary Calculus: An Infinitesimal ...