When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Triangular number - Wikipedia

    en.wikipedia.org/wiki/Triangular_number

    For example, the third triangular number is (3 × 2 =) 6, the seventh is (7 × 4 =) 28, the 31st is (31 × 16 =) 496, and the 127th is (127 × 64 =) 8128. The final digit of a triangular number is 0, 1, 3, 5, 6, or 8, and thus such numbers never end in 2, 4, 7, or 9. A final 3 must be preceded by a 0 or 5; a final 8 must be preceded by a 2 or 7.

  3. Centered triangular number - Wikipedia

    en.wikipedia.org/wiki/Centered_triangular_number

    Each centered triangular number has a remainder of 1 when divided by 3, and the quotient (if positive) is the previous regular triangular number. Each centered triangular number from 10 onwards is the sum of three consecutive regular triangular numbers. For n > 2, the sum of the first n centered triangular numbers is the magic constant for an n ...

  4. Truncated triangular pyramid number - Wikipedia

    en.wikipedia.org/wiki/Truncated_Triangular...

    Each layer represents one of the first five triangular numbers. A truncated triangular pyramid number [1] is found by removing some smaller tetrahedral number (or triangular pyramidal number) from each of the vertices of a bigger tetrahedral number. The number to be removed may be same or different from each of the vertices. [2]

  5. Trinomial expansion - Wikipedia

    en.wikipedia.org/wiki/Trinomial_expansion

    Layers of Pascal's pyramid derived from coefficients in an upside-down ternary plot of the terms in the expansions of the powers of a trinomial – the number of terms is clearly a triangular number. In mathematics, a trinomial expansion is the expansion of a power of a sum of three terms into monomials. The expansion is given by

  6. Figurate number - Wikipedia

    en.wikipedia.org/wiki/Figurate_number

    a number represented as a discrete r-dimensional regular geometric pattern of r-dimensional balls such as a polygonal number (for r = 2) or a polyhedral number (for r = 3). a member of the subset of the sets above containing only triangular numbers, pyramidal numbers , and their analogs in other dimensions.

  7. Cannonball problem - Wikipedia

    en.wikipedia.org/wiki/Cannonball_problem

    A triangular-pyramid version of the cannonball problem, which is to yield a perfect square from the N th Tetrahedral number, would have N = 48. That means that the (24 × 2 = ) 48th tetrahedral number equals to (70 2 × 2 2 = 140 2 = ) 19600. This is comparable with the 24th square pyramid having a total of 70 2 cannonballs. [5]

  8. Play Just Words Online for Free - AOL.com

    www.aol.com/games/play/masque-publishing/just-words

    If you love Scrabble, you'll love the wonderful word game fun of Just Words. Play Just Words free online!

  9. Centered polygonal number - Wikipedia

    en.wikipedia.org/wiki/Centered_polygonal_number

    The difference of the n-th and the (n+1)-th consecutive centered k-gonal numbers is k(2n+1). The n-th centered k-gonal number is equal to the n-th regular k-gonal number plus (n-1) 2. Just as is the case with regular polygonal numbers, the first centered k-gonal number is 1. Thus, for any k, 1 is both k-gonal and centered k-gonal.