When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Refractive index - Wikipedia

    en.wikipedia.org/wiki/Refractive_index

    The refractive index, , can be seen as the factor by which the speed and the wavelength of the radiation are reduced with respect to their vacuum values: the speed of light in a medium is v = c/n, and similarly the wavelength in that medium is λ = λ 0 /n, where λ 0 is the wavelength of that light in vacuum.

  3. Cauchy's equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_equation

    where n is the refractive index, λ is the wavelength, A, B, C, etc., are coefficients that can be determined for a material by fitting the equation to measured refractive indices at known wavelengths. The coefficients are usually quoted for λ as the vacuum wavelength in micrometres. Usually, it is sufficient to use a two-term form of the ...

  4. Mathematical descriptions of opacity - Wikipedia

    en.wikipedia.org/wiki/Mathematical_descriptions...

    For a given frequency, the wavelength of an electromagnetic wave is affected by the material in which it is propagating. The vacuum wavelength (the wavelength that a wave of this frequency would have if it were propagating in vacuum) is λ 0 = 2 π c ω , {\displaystyle \lambda _{0}={\frac {2\pi \mathrm {c} }{\omega }},} where c is the speed of ...

  5. Dispersion (optics) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(optics)

    In general, the refractive index is some function of the frequency f of the light, thus n = n(f), or alternatively, with respect to the wave's wavelength n = n(λ). The wavelength dependence of a material's refractive index is usually quantified by its Abbe number or its coefficients in an empirical formula such as the Cauchy or Sellmeier ...

  6. Optical path length - Wikipedia

    en.wikipedia.org/wiki/Optical_path_length

    For example, a wave passing through air appears to travel a shorter distance than an identical wave traveling the same distance in glass. This is because a larger number of wavelengths fit in the same distance due to the higher refractive index of the glass. The OPD can be calculated from the following equation:

  7. Snell's law - Wikipedia

    en.wikipedia.org/wiki/Snell's_law

    Snell's law (also known as the Snell–Descartes law, the ibn-Sahl law, [1] and the law of refraction) is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media, such as water, glass, or air.

  8. Sellmeier equation - Wikipedia

    en.wikipedia.org/wiki/Sellmeier_equation

    Here the coefficient A is an approximation of the short-wavelength (e.g., ultraviolet) absorption contributions to the refractive index at longer wavelengths. Other variants of the Sellmeier equation exist that can account for a material's refractive index change due to temperature, pressure, and other parameters.

  9. Gladstone–Dale relation - Wikipedia

    en.wikipedia.org/wiki/Gladstone–Dale_relation

    The index of refraction (n) is calculated from the change of angle of a collimated monochromatic beam of light from vacuum into liquid using Snell's law for refraction. Using the theory of light as an electromagnetic wave, [9] light takes a straight-line path through water at reduced speed (v) and wavelength (λ).