Search results
Results From The WOW.Com Content Network
Ethanol (also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound with the chemical formula CH 3 CH 2 OH. It is an alcohol, with its formula also written as C 2 H 5 OH, C 2 H 6 O or EtOH, where Et stands for ethyl. Ethanol is a volatile, flammable, colorless liquid with a characteristic wine-like ...
The term alcohol originally referred to the primary alcohol ethanol (ethyl alcohol), which is used as a drug and is the main alcohol present in alcoholic drinks. The suffix -ol appears in the International Union of Pure and Applied Chemistry (IUPAC) chemical name of all substances where the hydroxyl group is the functional group with the ...
The reaction from ethanol to carbon dioxide and water proceeds in at least 11 steps in humans. C 2 H 6 O (ethanol) is converted to C 2 H 4 O (acetaldehyde), then to C 2 H 4 O 2 (acetic acid), then to acetyl-CoA.
The dominant ethanol feedstock in warmer regions is sugarcane. [8] In temperate regions, corn or sugar beets are used. [8] [9] In the United States, the main feedstock for the production of ethanol is currently corn. [8] Approximately 2.8 gallons of ethanol are produced from one bushel of corn (0.42 liter per kilogram).
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
Ethanol from coal is the ethanol produced using coal as its carbon source. The anaerobic bacterium Clostridium ljungdahlii produces ethanol and acetic acid from CO, CO 2, and H 2 in synthesis gas. Early studies with C. ljungdahlii showed that relatively high concentrations of ethanol were produced. This process involves three main steps:
The temperature of the reaction influences the molecular weight of alcohol growth. Temperatures in the range of 60-120°C form higher molecular weight trialkylaluminium while higher temperatures (e.g., 120-150 °C) cause thermal displacement reactions that afford α-olefin chains. Above 150 °C, dimerization of the α-olefins occurs.
The 3-carbon alcohol, propanol (C 3 H 7 OH), is not often used as a direct fuel source for petrol engines (unlike ethanol, methanol and butanol), with most being directed into use as a solvent. However, it is used as a source of hydrogen in some types of fuel cell; it can generate a higher voltage than methanol, which is the fuel of choice for ...