Ad
related to: mah vs wh calculator for gas mileage conversion
Search results
Results From The WOW.Com Content Network
In the example provided by the US DoE in its final rule, an electric car with an energy consumption of 265 Watt hour per mile in urban driving, and 220 Watt hour per mile in highway driving, results in a petroleum-equivalent fuel economy of 335.24 miles per gallon, based on a driving schedule factor of 55 percent urban, and 45 percent highway ...
The sources for these figures are in the correspondent section for each vehicle, in the following article. The conversions amongst different types of units, are well known in the art. For the conversion amongst units of energy in the following table, 1 litre of petrol amounts to 34.2 MJ, 1 kWh amounts to 3.6 MJ and 1 kilocalorie amounts to 4184 J.
For example: 360 miles traveled on 15 gallons of gas = 24 miles per gallon (mpg) of fuel economy. The higher the mpg, the more fuel-efficient your car is and the less money you’ll spend on gas ...
One GGE of natural gas is 126.67 cubic feet (3.587 m 3) at standard conditions. This volume of natural gas has the same energy content as one US gallon of gasoline (based on lower heating values: 900 BTU/cu ft (9.3 kWh/m 3) of natural gas and 114,000 BTU/US gal (8.8 kWh/L) for gasoline). [22]
The watt, kilogram, joule, and the second are part of the International System of Units (SI). The hour is not, though it is accepted for use with the SI.Since a watt equals one joule per second and because one hour equals 3600 seconds, one watt-hour per kilogram can be expressed in SI units as 3600 joules per kilogram.
Notes: All estimated fuel economy based on 15,000 miles (24,000 km) annual driving, 45% highway and 55% city (1) Conversion 1 gallon of gasoline=33.7 kW·h. (2) The 2014 i3 REx is classified by EPA as a series plug-in hybrid, while for CARB is a range-extended battery-electric vehicle (BEVx). The i3 REx is the most fuel economic EPA-certified ...
In the case of devices that output a different voltage than the battery, it is the battery voltage (typically 3.7 V for Li-ion) that must be used to calculate rather than the device output (for example, usually 5.0 V for USB portable chargers). This results in a 500 mA USB device running for about 3.7 hours on a 2,500 mAh battery, not five hours.
4), the perceived energy capacity of a small UPS product that has multiple DC outputs at different voltages but is simply listed with a single ampere-hour rating, e.g., 8800 mAh, would be exaggerated by a factor of 3.75 compared to that of a sealed 12-volt lead-acid battery where the ampere-hour rating, e.g., 7 Ah, is based on the total output ...