When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    The response variable may be non-continuous ("limited" to lie on some subset of the real line). For binary (zero or one) variables, if analysis proceeds with least-squares linear regression, the model is called the linear probability model. Nonlinear models for binary dependent variables include the probit and logit model.

  3. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    The link function is often related to the distribution of the response, and in particular it typically has the effect of transforming between the (,) range of the linear predictor and the range of the response variable. Some common examples of GLMs are: Poisson regression for count data.

  4. Dependent and independent variables - Wikipedia

    en.wikipedia.org/wiki/Dependent_and_independent...

    If the dependent variable is referred to as an "explained variable" then the term "predictor variable" is preferred by some authors for the independent variable. [22] An example is provided by the analysis of trend in sea level by Woodworth (1987). Here the dependent variable (and variable of most interest) was the annual mean sea level at a ...

  5. Generalized linear model - Wikipedia

    en.wikipedia.org/wiki/Generalized_linear_model

    Ordinary linear regression predicts the expected value of a given unknown quantity (the response variable, a random variable) as a linear combination of a set of observed values (predictors). This implies that a constant change in a predictor leads to a constant change in the response variable (i.e. a linear-response model). This is appropriate ...

  6. One-way analysis of variance - Wikipedia

    en.wikipedia.org/wiki/One-way_analysis_of_variance

    This analysis of variance technique requires a numeric response variable "Y" and a single explanatory variable "X", hence "one-way". [1] The ANOVA tests the null hypothesis, which states that samples in all groups are drawn from populations with the same mean values. To do this, two estimates are made of the population variance.

  7. Response modeling methodology - Wikipedia

    en.wikipedia.org/wiki/Response_Modeling_Methodology

    If the response data used to estimate the model contain values that change sign, or if the lowest response value is far from zero (for example, when data are left-truncated), a location parameter, L, may be added to the response so that the expressions for the quantile function and for the median become, respectively:

  8. Response surface methodology - Wikipedia

    en.wikipedia.org/wiki/Response_surface_methodology

    Designed experiments with full factorial design (left), response surface with second-degree polynomial (right) In statistics, response surface methodology (RSM) explores the relationships between several explanatory variables and one or more response variables. RSM is an empirical model which employs the use of mathematical and statistical ...

  9. Design matrix - Wikipedia

    en.wikipedia.org/wiki/Design_matrix

    The design matrix contains data on the independent variables (also called explanatory variables), in a statistical model that is intended to explain observed data on a response variable (often called a dependent variable). The theory relating to such models uses the design matrix as input to some linear algebra : see for example linear regression.