When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. EWMA chart - Wikipedia

    en.wikipedia.org/wiki/EWMA_chart

    While other control charts treat rational subgroups of samples individually, the EWMA chart tracks the exponentially-weighted moving average of all prior sample means. EWMA weights samples in geometrically decreasing order so that the most recent samples are weighted most highly while the most distant samples contribute very little. [2]: 406

  3. Exponential smoothing - Wikipedia

    en.wikipedia.org/wiki/Exponential_smoothing

    Exponential smoothing or exponential moving average (EMA) is a rule of thumb technique for smoothing time series data using the exponential window function. Whereas in the simple moving average the past observations are weighted equally, exponential functions are used to assign exponentially decreasing weights over time. It is an easily learned ...

  4. Moving average - Wikipedia

    en.wikipedia.org/wiki/Moving_average

    An exponential moving average (EMA), also known as an exponentially weighted moving average (EWMA), [5] is a first-order infinite impulse response filter that applies weighting factors which decrease exponentially. The weighting for each older datum decreases exponentially, never reaching zero. This formulation is according to Hunter (1986). [6]

  5. Unit-weighted regression - Wikipedia

    en.wikipedia.org/wiki/Unit-weighted_regression

    The Kerby method is similar to the Burgess method, but differs in two ways. First, while the Burgess method uses subjective judgment to select a cutoff score for a multi-valued predictor with a binary outcome, the Kerby method uses classification and regression tree analysis. In this way, the selection of the cutoff score is based not on ...

  6. Local regression - Wikipedia

    en.wikipedia.org/wiki/Local_regression

    Local regression or local polynomial regression, [1] also known as moving regression, [2] is a generalization of the moving average and polynomial regression. [3] Its most common methods, initially developed for scatterplot smoothing, are LOESS (locally estimated scatterplot smoothing) and LOWESS (locally weighted scatterplot smoothing), both pronounced / ˈ l oʊ ɛ s / LOH-ess.

  7. Forecasting - Wikipedia

    en.wikipedia.org/wiki/Forecasting

    These methods are usually applied to short- or intermediate-range decisions. Examples of quantitative forecasting methods are [citation needed] last period demand, simple and weighted N-Period moving averages, simple exponential smoothing, Poisson process model based forecasting [15] and multiplicative seasonal indexes. Previous research shows ...

  8. Multilevel regression with poststratification - Wikipedia

    en.wikipedia.org/wiki/Multilevel_regression_with...

    Multilevel regression with poststratification (MRP) is a statistical technique used for correcting model estimates for known differences between a sample population (the population of the data one has), and a target population (a population one wishes to estimate for).

  9. Mean absolute percentage error - Wikipedia

    en.wikipedia.org/wiki/Mean_absolute_percentage_error

    It is a measure used to evaluate the performance of regression or forecasting models. It is a variant of MAPE in which the mean absolute percent errors is treated as a weighted arithmetic mean. Most commonly the absolute percent errors are weighted by the actuals (e.g. in case of sales forecasting, errors are weighted by sales volume). [3]