When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Graph continuous function - Wikipedia

    en.wikipedia.org/wiki/Graph_continuous_function

    Function : is graph continuous if for all there exists a function : such that ((),) is continuous at .. Dasgupta and Maskin named this property "graph continuity" because, if one plots a graph of a player's payoff as a function of his own strategy (keeping the other players' strategies fixed), then a graph-continuous payoff function will result in this graph changing continuously as one varies ...

  3. Closed graph theorem - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_theorem

    An example of non-compact is the real line, which allows the discontinuous function with closed graph () = {,. Also, closed linear operators in functional analysis (linear operators with closed graphs) are typically not continuous.

  4. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    A real function that is a function from real numbers to real numbers can be represented by a graph in the Cartesian plane; such a function is continuous if, roughly speaking, the graph is a single unbroken curve whose domain is the entire real line. A more mathematically rigorous definition is given below.

  5. Closed graph theorem (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_theorem...

    The usual proof of the closed graph theorem employs the open mapping theorem.It simply uses a general recipe of obtaining the closed graph theorem from the open mapping theorem; see closed graph theorem § Relation to the open mapping theorem (this deduction is formal and does not use linearity; the linearity is needed to appeal to the open mapping theorem which relies on the linearity.)

  6. List of mathematical functions - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_functions

    Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function. Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise.

  7. Weierstrass function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_function

    Analogous results for better behaved classes of continuous functions do exist, for example the Lipschitz functions, whose set of non-differentiability points must be a Lebesgue null set (Rademacher's theorem). When we try to draw a general continuous function, we usually draw the graph of a function which is Lipschitz or otherwise well-behaved.

  8. Sigmoid function - Wikipedia

    en.wikipedia.org/wiki/Sigmoid_function

    A sigmoid function is any mathematical function whose graph has a characteristic S-shaped or sigmoid curve. A common example of a sigmoid function is the logistic function , which is defined by the formula: [ 1 ]

  9. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    For a Lipschitz continuous function, there exists a double cone (white) whose origin can be moved along the graph so that the whole graph always stays outside the double cone. In mathematical analysis, Lipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions.