Search results
Results From The WOW.Com Content Network
Machine learningand data mining. In data mining and statistics, hierarchical clustering (also called hierarchical cluster analysis or HCA) is a method of cluster analysis that seeks to build a hierarchy of clusters. Strategies for hierarchical clustering generally fall into two categories:
In the theory of cluster analysis, the nearest-neighbor chain algorithm is an algorithm that can speed up several methods for agglomerative hierarchical clustering. These are methods that take a collection of points as input, and create a hierarchy of clusters of points by repeatedly merging pairs of smaller clusters to form larger clusters.
e. Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters). It is a main task of exploratory data analysis, and a common technique for statistical ...
The Calinski–Harabasz index (CHI), also known as the Variance Ratio Criterion (VRC), is a metric for evaluating clustering algorithms, introduced by Tadeusz CaliĆski and Jerzy Harabasz in 1974. [1] It is an internal evaluation metric, where the assessment of the clustering quality is based solely on the dataset and the clustering results ...
Single-linkage clustering. In statistics, single-linkage clustering is one of several methods of hierarchical clustering. It is based on grouping clusters in bottom-up fashion (agglomerative clustering), at each step combining two clusters that contain the closest pair of elements not yet belonging to the same cluster as each other.
Complete-linkage clustering. Complete-linkage clustering is one of several methods of agglomerative hierarchical clustering. At the beginning of the process, each element is in a cluster of its own. The clusters are then sequentially combined into larger clusters until all elements end up being in the same cluster.
Fowlkes–Mallows index. The Fowlkes–Mallows index is an external evaluation method that is used to determine the similarity between two clusterings (clusters obtained after a clustering algorithm), and also a metric to measure confusion matrices. This measure of similarity could be either between two hierarchical clusterings or a clustering ...
In the study of hierarchical clustering, Dasgupta's objective is a measure of the quality of a clustering, defined from a similarity measure on the elements to be clustered. It is named after Sanjoy Dasgupta, who formulated it in 2016. [1] Its key property is that, when the similarity comes from an ultrametric space, the optimal clustering for ...