Search results
Results From The WOW.Com Content Network
Series RL, parallel C circuit with resistance in series with the inductor is the standard model for a self-resonant inductor. A series resistor with the inductor in a parallel LC circuit as shown in Figure 4 is a topology commonly encountered where there is a need to take into account the resistance of the coil winding and its self-capacitance.
A series circuit with a voltage source (such as a battery, or in this case a cell) and three resistance units. Two-terminal components and electrical networks can be connected in series or parallel. The resulting electrical network will have two terminals, and itself can participate in a series or parallel topology.
A resistor–inductor circuit (RL circuit), or RL filter or RL network, is an electric circuit composed of resistors and inductors driven by a voltage or current source. [1] A first-order RL circuit is composed of one resistor and one inductor, either in series driven by a voltage source or in parallel driven by a current source.
Norton's theorem states that any two-terminal linear network can be reduced to an ideal current generator and a parallel impedance. Thévenin's theorem states that any two-terminal linear network can be reduced to an ideal voltage generator plus a series impedance.
One-element networks are trivial and two-element, [note 3] two-terminal networks are either two elements in series or two elements in parallel, also trivial. The smallest number of elements that is non-trivial is three, and there are two 2-element-kind non-trivial transformations possible, one being both the reverse transformation and the topological dual, of the other.
Loading coils inserted periodically in series with a pair of wires reduce the attenuation at the higher voice frequencies up to the cutoff frequency of the low-pass filter formed by the inductance of the coils (plus the distributed inductance of the wires) and the distributed capacitance between the wires. Above the cutoff frequency ...
A Maxwell bridge is a modification to a Wheatstone bridge used to measure an unknown inductance (usually of low Q value) in terms of calibrated resistance and inductance or resistance and capacitance. [1] When the calibrated components are a parallel resistor and capacitor, the bridge is known as a Maxwell bridge.
This means that physical components contain some inductance in addition to their other properties. [ 2 ] An easy way to deal with these inherent inductances in circuit analysis is by using a lumped element model to express each physical component as a combination of an ideal component and a small inductor in series , the inductor having a value ...