Search results
Results From The WOW.Com Content Network
An abundant number whose abundance is greater than any lower number is called a highly abundant number, and one whose relative abundance (i.e. s(n)/n ) is greater than any lower number is called a superabundant number; Every integer greater than 20161 can be written as the sum of two abundant numbers. The largest even number that is not the sum ...
The relation not greater than can also be represented by , the symbol for "greater than" bisected by a slash, "not". The same is true for not less than , a ≮ b . {\displaystyle a\nless b.} The notation a ≠ b means that a is not equal to b ; this inequation sometimes is considered a form of strict inequality. [ 4 ]
In mathematical writing, the greater-than sign is typically placed between two values being compared and signifies that the first number is greater than the second number. Examples of typical usage include 1.5 > 1 and 1 > −2. The less-than sign and greater-than sign always "point" to the smaller number.
The figure illustrates the percentile rank computation and shows how the 0.5 × F term in the formula ensures that the percentile rank reflects a percentage of scores less than the specified score. For example, for the 10 scores shown in the figure, 60% of them are below a score of 4 (five less than 4 and half of the two equal to 4) and 95% are ...
For example, π(10) = 4 because there are four prime numbers (2, 3, 5 and 7) less than or equal to 10. The prime number theorem then states that x / log x is a good approximation to π ( x ) (where log here means the natural logarithm), in the sense that the limit of the quotient of the two functions π ( x ) and x / log x as x increases ...
First, when the user runs the program, a cursor appears waiting for the reader to type a number. If that number is greater than 10, the text "My variable is named 'foo'." is displayed on the screen. If the number is smaller than 10, then the message "My variable is named 'bar'." is printed on the screen.
For example, −3 represents a negative quantity with a magnitude of three, and is pronounced "minus three" or "negative three". Conversely, a number that is greater than zero is called positive; zero is usually (but not always) thought of as neither positive nor negative. [2]
Using this approach, Meissel computed π(x), for x equal to 5 × 10 5, 10 6, 10 7, and 10 8. In 1959, Derrick Henry Lehmer extended and simplified Meissel's method. Define, for real m and for natural numbers n and k , P k ( m , n ) as the number of numbers not greater than m with exactly k prime factors, all greater than p n .