Search results
Results From The WOW.Com Content Network
However, plant growth is also highly relevant in agronomy, where plants are generally grown at high density and to seed maturity. After canopy closure, plant growth is not proportional to size anymore, but changes to linear, with in the end saturation to a maximum value when crops mature.
In the long run, exponential growth of any kind will overtake linear growth of any kind (that is the basis of the Malthusian catastrophe) as well as any polynomial growth, that is, for all α: = There is a whole hierarchy of conceivable growth rates that are slower than exponential and faster than linear (in the long run).
For example, with an annual growth rate of 4.8% the doubling time is 14.78 years, and a doubling time of 10 years corresponds to a growth rate between 7% and 7.5% (actually about 7.18%). When applied to the constant growth in consumption of a resource, the total amount consumed in one doubling period equals the total amount consumed in all ...
When calculating or discussing relative growth rate, it is important to pay attention to the units of time being considered. [2] For example, if an initial population of S 0 bacteria doubles every twenty minutes, then at time interval it is given by solving the equation:
The rate at which a population increases in size if there are no density-dependent forces regulating the population is known as the intrinsic rate of increase.It is = where the derivative / is the rate of increase of the population, N is the population size, and r is the intrinsic rate of increase.
The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.
Geometric progressions show exponential growth or exponential decline, as opposed to arithmetic progressions showing linear growth or linear decline. This comparison was taken by T.R. Malthus as the mathematical foundation of his An Essay on the Principle of Population.
Inverted logistic S-curve to model the relation between wheat yield and soil salinity. Many natural processes, such as those of complex system learning curves, exhibit a progression from small beginnings that accelerates and approaches a climax over time.