When.com Web Search

  1. Ads

    related to: fraunhofer diffraction grating

Search results

  1. Results From The WOW.Com Content Network
  2. Fraunhofer diffraction - Wikipedia

    en.wikipedia.org/wiki/Fraunhofer_diffraction

    In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when plane waves are incident on a diffracting object, and the diffraction pattern is viewed at a sufficiently long distance (a distance satisfying Fraunhofer condition) from the object (in the far-field region), and also when it is viewed at the focal plane of an imaging lens.

  3. Fraunhofer diffraction equation - Wikipedia

    en.wikipedia.org/wiki/Fraunhofer_diffraction...

    The Fraunhofer diffraction equation is an approximation which can be applied when the diffracted wave is observed in the far field, and also when a lens is used to focus the diffracted light; in many instances, a simple analytical solution is available to the Fraunhofer equation – several of these are derived below.

  4. Joseph von Fraunhofer - Wikipedia

    en.wikipedia.org/wiki/Joseph_von_Fraunhofer

    Fraunhofer also developed a diffraction grating in 1821, after James Gregory discovered the phenomenon of diffraction grating and after the American astronomer David Rittenhouse invented the first manmade diffraction grating in 1785. [15] [16] Fraunhofer was the first who used a diffraction grating to obtain line spectra and the first who ...

  5. Diffraction grating - Wikipedia

    en.wikipedia.org/wiki/Diffraction_grating

    A blazed diffraction grating reflecting only the green portion of the spectrum from a room's fluorescent lighting. For a diffraction grating, the relationship between the grating spacing (i.e., the distance between adjacent grating grooves or slits), the angle of the wave (light) incidence to the grating, and the diffracted wave from the grating is known as the grating equation.

  6. Diffraction from slits - Wikipedia

    en.wikipedia.org/wiki/Diffraction_from_slits

    Because diffraction is the result of addition of all waves (of given wavelength) along all unobstructed paths, the usual procedure is to consider the contribution of an infinitesimally small neighborhood around a certain path (this contribution is usually called a wavelet) and then integrate over all paths (= add all wavelets) from the source to the detector (or given point on a screen).

  7. Optical spectrometer - Wikipedia

    en.wikipedia.org/wiki/Optical_spectrometer

    Joseph von Fraunhofer developed the first modern spectroscope by combining a prism, diffraction slit and telescope in a manner that increased the spectral resolution and was reproducible in other laboratories. Fraunhofer also went on to invent the first diffraction spectroscope. [5]

  8. History of spectroscopy - Wikipedia

    en.wikipedia.org/wiki/History_of_spectroscopy

    Solar spectrum with Fraunhofer lines as it appears visually. Joseph von Fraunhofer made a significant experimental leap forward by replacing a prism with a diffraction grating as the source of wavelength dispersion. Fraunhofer built off the theories of light interference developed by Thomas Young, François Arago and Augustin-Jean Fresnel. He ...

  9. Fresnel diffraction - Wikipedia

    en.wikipedia.org/wiki/Fresnel_diffraction

    In contrast the diffraction pattern in the far field region is given by the Fraunhofer diffraction equation. The near field can be specified by the Fresnel number, F, of the optical arrangement. When the diffracted wave is considered to be in the Fraunhofer field. However, the validity of the Fresnel diffraction integral is deduced by the ...