Search results
Results From The WOW.Com Content Network
Power in mechanical systems is the combination of forces and movement. In particular, power is the product of a force on an object and the object's velocity, or the product of a torque on a shaft and the shaft's angular velocity. Mechanical power is also described as the time derivative of work.
The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m 2 ⋅s −3. [1] [2] [3] It is used to quantify the rate of energy transfer.
Electric power is the rate of transfer of electrical energy within a circuit.Its SI unit is the watt, the general unit of power, defined as one joule per second.Standard prefixes apply to watts as with other SI units: thousands, millions and billions of watts are called kilowatts, megawatts and gigawatts respectively.
The unit "var" is allowed by the International System of Units (SI) even though the unit var is representative of a form of power. [8] Per EU directive 80/181/EEC (the "metric directive"), the correct symbol is lower-case "var", [1] although the spellings "Var" and "VAr" are commonly seen, and "VAR" is widely used throughout the power industry.
In physics, the Poynting vector (or Umov–Poynting vector) represents the directional energy flux (the energy transfer per unit area, per unit time) or power flow of an electromagnetic field. The SI unit of the Poynting vector is the watt per square metre (W/m 2); kg/s 3 in base SI units.
In physics and many other areas of science and engineering the intensity or flux of radiant energy is the power transferred per unit area, where the area is measured on the plane perpendicular to the direction of propagation of the energy. [a] In the SI system, it has units watts per square metre (W/m 2), or kg⋅s −3 in base units.
The joule (/ dʒ uː l / JOOL, or / dʒ aʊ l / JOWL; symbol: J) is the unit of energy in the International System of Units (SI). [1] It is equal to the amount of work done when a force of one newton displaces a mass through a distance of one metre in the direction of that force.
The SI system after 1983, but before the 2019 revision: Dependence of base unit definitions on other base units (for example, the metre is defined as the distance travelled by light in a specific fraction of a second), with the constants of nature and artefacts used to define them (such as the mass of the IPK for the kilogram).