When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...

  3. Multigrid method - Wikipedia

    en.wikipedia.org/wiki/Multigrid_method

    Originally described in Xu's Ph.D. thesis [9] and later published in Bramble-Pasciak-Xu, [10] the BPX-preconditioner is one of the two major multigrid approaches (the other is the classic multigrid algorithm such as V-cycle) for solving large-scale algebraic systems that arise from the discretization of models in science and engineering ...

  4. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). [1]

  5. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to lie on a surface in space, then the solution is less obvious, and possibly many solutions may exist.

  6. Quadratically constrained quadratic program - Wikipedia

    en.wikipedia.org/wiki/Quadratically_constrained...

    Solving the general non-convex case is an NP-hard problem. To see this, note that the two constraints x 1 ( x 1 − 1) ≤ 0 and x 1 ( x 1 − 1) ≥ 0 are equivalent to the constraint x 1 ( x 1 − 1) = 0, which is in turn equivalent to the constraint x 1 ∈ {0, 1}.

  7. Wolfe conditions - Wikipedia

    en.wikipedia.org/wiki/Wolfe_conditions

    Each step often involves approximately solving the subproblem (+) where is the current best guess, is a search direction, and is the step length. The inexact line searches provide an efficient way of computing an acceptable step length that reduces the objective function 'sufficiently', rather than minimizing the objective function over + exactly.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Constraint (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Constraint_(mathematics)

    In this example, the first line defines the function to be minimized (called the objective function, loss function, or cost function). The second and third lines define two constraints, the first of which is an inequality constraint and the second of which is an equality constraint.