Search results
Results From The WOW.Com Content Network
Temperature-dependency of the heats of vaporization for water, methanol, benzene, and acetone. In thermodynamics, the enthalpy of vaporization (symbol ∆H vap), also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy that must be added to a liquid substance to transform a quantity of that substance into a gas.
Evaporation is an essential part of the water cycle. The sun (solar energy) drives evaporation of water from oceans, lakes, moisture in the soil, and other sources of water. In hydrology, evaporation and transpiration (which involves evaporation within plant stomata) are collectively termed evapotranspiration. Evaporation of water occurs when ...
For example, when water evaporates, an input of energy is required for the water molecules to overcome the forces of attraction between them and make the transition from water to vapor. If the vapor then condenses to a liquid on a surface, then the vapor's latent energy absorbed during evaporation is released as the liquid's sensible heat onto ...
Liquid water that becomes water vapor takes a parcel of heat with it, in a process called evaporative cooling. [3] The amount of water vapor in the air determines how frequently molecules will return to the surface. When a net evaporation occurs, the body of water will undergo a net cooling directly related to the loss of water.
Evaporation is a phase transition from the liquid phase to vapor (a state of substance below critical temperature) that occurs at temperatures below the boiling temperature at a given pressure. Evaporation occurs on the surface. Evaporation only occurs when the partial pressure of vapor of a substance is less than the equilibrium vapor pressure ...
The specific enthalpy of fusion (more commonly known as latent heat) of water is 333.55 kJ/kg at 0 °C: the same amount of energy is required to melt ice as to warm ice from −160 °C up to its melting point or to heat the same amount of water by about 80 °C. Of common substances, only that of ammonia is higher.
Evaporative cooling exploits the fact that water will absorb a relatively large amount of heat in order to evaporate (that is, it has a large enthalpy of vaporization). The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapor (evaporation). This can cool air using much less energy than ...
At this pressure, the condensation temperature of the water vapor at the heat exchanger will be 390 K. Taking into account the boiling point elevation of the salt water we wish to evaporate (8 K for a saturated salt solution), this leaves a temperature difference of less than 8 K at the heat exchanger. A small ∆T leads to slow heat transfer ...