Search results
Results From The WOW.Com Content Network
The GPlates software platform comprises the GPlates desktop software, command line tools, GPlates Python library (pyGPlates), GPlates web service and web application, a high-level Python encapsulation package GPlately, a plate tectonic toolkit PlateTectonicTools and a data server which serves plate reconstruction model datasets from the cloud.
The Vine–Matthews–Morley hypothesis, also known as the Morley–Vine–Matthews hypothesis, was the first key scientific test of the seafloor spreading theory of continental drift and plate tectonics. Its key impact was that it allowed the rates of plate motions at mid-ocean ridges to be computed.
Pure shear sandbox model of thrust fault formation. Analogue modelling is a laboratory experimental method using uncomplicated physical models (such as a sandbox) with certain simple scales of time and length to model geological scenarios and simulate geodynamic evolutions. [1] [2] There are numerous limitations affecting the direct study of ...
Plate tectonics (from Latin tectonicus, from Ancient Greek τεκτονικός (tektonikós) 'pertaining to building') [1] is the scientific theory that Earth's lithosphere comprises a number of large tectonic plates, which have been slowly moving since 3–4 billion years ago.
Plate tectonics is a theory suggesting that the Earth's lithosphere is essentially composed of plates floating on the mantle. [97] The mantle convection model is fundamental in modeling the plates floating on it, and there are two major approaches to incorporate the plates into this model: rigid-block approach and rheological approach. [2]
The Wilson cycle theory is based upon the idea of an ongoing cycle of ocean closure, continental collision, and a formation of new ocean on the former suture zone.The Wilson Cycle can be described in six phases of tectonic plate motion: the separation of a continent (continental rift), formation of a young ocean at the seafloor, formation of ocean basins during continental drift, initiation of ...
In 1977 researchers M. Kumazawa and Y. Fukao [1] introduced the term "mesoplate" in the context of what they termed a "Dual Plate Tectonic Model." Their rationale is a postulated low-velocity zone near and above the 650 km discontinuity with additional properties including local low melting temperature, active chemical migration and fractionation, and low-viscosity.
Mars, Venus, Mercury and other planetary bodies have relatively quasi-uniform crusts unlike that of the Earth which contains both oceanic and continental plates. [1] This unique property reflects the complex series of crustal processes that have taken place throughout the planet's history, including the ongoing process of plate tectonics.