When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Intensity (heat transfer) - Wikipedia

    en.wikipedia.org/wiki/Intensity_(heat_transfer)

    In the field of heat transfer, intensity of radiation is a measure of the distribution of radiant heat flux per unit area and solid angle, in a particular direction, defined according to d q = I d ω cos ⁡ θ d A {\displaystyle dq=I\,d\omega \,\cos \theta \,dA}

  3. Radiant intensity - Wikipedia

    en.wikipedia.org/wiki/Radiant_intensity

    Radiant intensity is used to characterize the emission of radiation by an antenna: [2], = (), where E e is the irradiance of the antenna;; r is the distance from the antenna.; Unlike power density, radiant intensity does not depend on distance: because radiant intensity is defined as the power through a solid angle, the decreasing power density over distance due to the inverse-square law is ...

  4. Intensity (physics) - Wikipedia

    en.wikipedia.org/wiki/Intensity_(physics)

    In physics and many other areas of science and engineering the intensity or flux of radiant energy is the power transferred per unit area, where the area is measured on the plane perpendicular to the direction of propagation of the energy.

  5. Irradiance - Wikipedia

    en.wikipedia.org/wiki/Irradiance

    Radiant intensity: I e,Ω [nb 5] watt per steradian: W/sr: M⋅L 2 ⋅T −3: Radiant flux emitted, reflected, transmitted or received, per unit solid angle. This is a directional quantity. Spectral intensity: I e,Ω,ν [nb 3] watt per steradian per hertz W⋅sr −1 ⋅Hz −1: M⋅L 2 ⋅T −2: Radiant intensity per unit frequency or wavelength.

  6. Radiant exposure - Wikipedia

    en.wikipedia.org/wiki/Radiant_exposure

    In radiometry, radiant exposure or fluence is the radiant energy received by a surface per unit area, or equivalently the irradiance of a surface, integrated over time of irradiation, and spectral exposure is the radiant exposure per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength.

  7. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    The Stefan–Boltzmann law, also known as Stefan's law, describes the intensity of the thermal radiation emitted by matter in terms of that matter's temperature. It is named for Josef Stefan , who empirically derived the relationship, and Ludwig Boltzmann who derived the law theoretically.

  8. Schwarzschild's equation for radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild's_equation...

    When the intensity of the incoming radiation, I λ, is much greater than the intensity of blackbody radiation, B λ (T), the emission term can be neglected. This is usually the case when working with a laboratory spectrophotometer, where the sample is near 300 K and the light source is a filament at several thousand K.

  9. Radiant energy - Wikipedia

    en.wikipedia.org/wiki/Radiant_energy

    Radiant intensity: I e,Ω [nb 5] watt per steradian: W/sr: M⋅L 2 ⋅T −3: Radiant flux emitted, reflected, transmitted or received, per unit solid angle. This is a directional quantity. Spectral intensity: I e,Ω,ν [nb 3] watt per steradian per hertz W⋅sr −1 ⋅Hz −1: M⋅L 2 ⋅T −2: Radiant intensity per unit frequency or wavelength.