Search results
Results From The WOW.Com Content Network
The circle Hough Transform (CHT) is a basic feature extraction technique used in digital image processing for detecting circles in imperfect images. The circle candidates are produced by “voting” in the Hough parameter space and then selecting local maxima in an accumulator matrix. It is a specialization of the Hough transform.
In mathematical morphology, the h-maxima transform is a morphological operation used to filter local maxima of an image based on local contrast information. First, all local maxima are defined as connected pixels in a given neighborhood with intensity level greater than pixels outside the neighborhood.
Given some property of interest expressed as a function of position on the image, there are two main classes of blob detectors: (i) differential methods, which are based on derivatives of the function with respect to position, and (ii) methods based on local extrema, which are based on finding the local maxima and minima of the function.
In image processing, ridge detection is the attempt, via software, to locate ridges in an image, defined as curves whose points are local maxima of the function, akin to geographical ridges. For a function of N variables, its ridges are a set of curves whose points are local maxima in N − 1 dimensions.
Given a source image, if a sequence of thresholded result images is generated where each image corresponds to an increasing threshold t, first a white image would be seen, then 'black' spots corresponding to local intensity minima will appear then grow larger. A maximally stable extremal region is found when size of one of these black areas is ...
The search-based methods detect edges by first computing a measure of edge strength, usually a first-order derivative expression such as the gradient magnitude, and then searching for local directional maxima of the gradient magnitude using a computed estimate of the local orientation of the edge, usually the gradient direction.
where are the input samples and () is the kernel function (or Parzen window). is the only parameter in the algorithm and is called the bandwidth. This approach is known as kernel density estimation or the Parzen window technique. Once we have computed () from the equation above, we can find its local maxima using gradient ascent or some other optimization technique. The problem with this ...
This adaptability helps in handling images with non-uniform lighting conditions or complex textures. Preservation of Local Details: By applying tailored thresholds to different regions, local thresholding can preserve fine details and edges that might be lost in global thresholding, especially in areas with varying intensities or gradients.