When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Shockley–Queisser limit - Wikipedia

    en.wikipedia.org/wiki/ShockleyQueisser_limit

    The ShockleyQueisser limit, zoomed in near the region of peak efficiency. In a traditional solid-state semiconductor such as silicon, a solar cell is made from two doped crystals, one an n-type semiconductor, which has extra free electrons, and the other a p-type semiconductor, which is lacking free electrons, referred to as "holes."

  3. Thermodynamic efficiency limit - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_efficiency_limit

    The Shockley-Queisser limit for the efficiency of a single-junction solar cell under unconcentrated sunlight. This calculated curve uses actual solar spectrum data, and therefore the curve is wiggly from IR absorption bands in the atmosphere. This efficiency limit of about 34% can be exceeded by multijunction solar cells.

  4. Multi-junction solar cell - Wikipedia

    en.wikipedia.org/wiki/Multi-junction_solar_cell

    The theoretical performance of a solar cell was first studied in depth in the 1960s, and is today known as the ShockleyQueisser limit. The limit describes several loss mechanisms that are inherent to any solar cell design. The first are the losses due to blackbody radiation, a loss mechanism that affects any material object above absolute zero.

  5. Solar-cell efficiency - Wikipedia

    en.wikipedia.org/wiki/Solar-cell_efficiency

    The ShockleyQueisser limit for the efficiency of a single-junction solar cell under unconcentrated sunlight at 273 K. This calculated curve uses actual solar spectrum data, and therefore the curve is wiggly from IR absorption bands in the atmosphere. This efficiency limit of ~34% can be exceeded by multijunction solar cells.

  6. Third-generation photovoltaic cell - Wikipedia

    en.wikipedia.org/wiki/Third-generation...

    Third-generation photovoltaic cells are solar cells that are potentially able to overcome the ShockleyQueisser limit of 31–41% power efficiency for single bandgap solar cells. This includes a range of alternatives to cells made of semiconducting p-n junctions ("first generation") and thin film cells ("second generation").

  7. Talk:Shockley–Queisser limit - Wikipedia

    en.wikipedia.org/wiki/Talk:ShockleyQueisser_limit

    The numbers are normally not similar as you suggest. But in any case, f c cannot be more than 1, and the upper limit (the Shockley-Queisser limit) requires taking f c = 1. Eric Kvaalen 19:05, 6 September 2016 (UTC) Yes, virtually all above-gap photons come from recombination, but not all recombinations create above-bandgap photons.

  8. Perovskite solar cell - Wikipedia

    en.wikipedia.org/wiki/Perovskite_solar_cell

    The ShockleyQueisser limit radiative efficiency limit, also known as the detailed balance limit, [105] [106] is about 31% under an AM1.5G solar spectrum at 1000 W/m 2, for a Perovskite bandgap of 1.55 eV. [107] This is slightly smaller than the radiative limit of gallium arsenide of bandgap 1.42 eV which can reach a radiative efficiency of 33%.

  9. Quantum dot solar cell - Wikipedia

    en.wikipedia.org/wiki/Quantum_dot_solar_cell

    The band gap (1.34 eV) of an ideal single-junction cell is close to that of silicon (1.1 eV), one of the many reasons that silicon dominates the market. However, silicon's efficiency is limited to about 30% (ShockleyQueisser limit). It is possible to improve on a single-junction cell by vertically stacking cells with different bandgaps ...