Search results
Results From The WOW.Com Content Network
The special case of linear support vector machines can be solved more efficiently by the same kind of algorithms used to optimize its close cousin, logistic regression; this class of algorithms includes sub-gradient descent (e.g., PEGASOS [48]) and coordinate descent (e.g., LIBLINEAR [49]). LIBLINEAR has some attractive training-time properties.
In this version one finds the solution by solving a set of linear equations instead of a convex quadratic programming (QP) problem for classical SVMs. Least-squares SVM classifiers were proposed by Johan Suykens and Joos Vandewalle. [1] LS-SVMs are a class of kernel-based learning methods.
In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). These methods involve using linear classifiers to solve nonlinear problems. [1]
The hinge loss is a convex function, so many of the usual convex optimizers used in machine learning can work with it.It is not differentiable, but has a subgradient with respect to model parameters w of a linear SVM with score function = that is given by
The hyperplane learned in feature space by an SVM is an ellipse in the input space. In machine learning , the polynomial kernel is a kernel function commonly used with support vector machines (SVMs) and other kernelized models, that represents the similarity of vectors (training samples) in a feature space over polynomials of the original ...
Sequential minimal optimization (SMO) is an algorithm for solving the quadratic programming (QP) problem that arises during the training of support-vector machines (SVM). It was invented by John Platt in 1998 at Microsoft Research. [1] SMO is widely used for training support vector machines and is implemented by the popular LIBSVM tool.
Whereas the SVM classifier supports binary classification, multiclass classification and regression, the structured SVM allows training of a classifier for general structured output labels. As an example, a sample instance might be a natural language sentence, and the output label is an annotated parse tree. Training a classifier consists of ...
The conjugate gradient method with a trivial modification is extendable to solving, given complex-valued matrix A and vector b, the system of linear equations = for the complex-valued vector x, where A is Hermitian (i.e., A' = A) and positive-definite matrix, and the symbol ' denotes the conjugate transpose.