When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Two-body problem - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem

    The most prominent example of the classical two-body problem is the gravitational case (see also Kepler problem), arising in astronomy for predicting the orbits (or escapes from orbit) of objects such as satellites, planets, and stars. A two-point-particle model of such a system nearly always describes its behavior well enough to provide useful ...

  3. Orbit modeling - Wikipedia

    en.wikipedia.org/wiki/Orbit_modeling

    Orbit modeling is the process of creating mathematical models to simulate motion of a massive body as it moves in orbit around another massive body due to gravity.Other forces such as gravitational attraction from tertiary bodies, air resistance, solar pressure, or thrust from a propulsion system are typically modeled as secondary effects.

  4. Vicsek model - Wikipedia

    en.wikipedia.org/wiki/Vicsek_model

    This model shows a phase transition [6] from a disordered motion to large-scale ordered motion. At large noise or low density, particles are on average not aligned, and they can be described as a disordered gas. At low noise and large density, particles are globally aligned and move in the same direction (collective motion). This state is ...

  5. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    In circular motion, the distance between the body and a fixed point on its surface remains the same, i.e., the body is assumed rigid. Examples of circular motion include: special satellite orbits around the Earth (circular orbits), a ceiling fan's blades rotating around a hub, a stone that is tied to a rope and is being swung in circles, a car ...

  6. Kepler problem - Wikipedia

    en.wikipedia.org/wiki/Kepler_problem

    He eventually summarized his results in the form of three laws of planetary motion. [2] What is now called the Kepler problem was first discussed by Isaac Newton as a major part of his Principia. His "Theorema I" begins with the first two of his three axioms or laws of motion and results in Kepler's second law of planetary motion. Next Newton ...

  7. Elliptic orbit - Wikipedia

    en.wikipedia.org/wiki/Elliptic_orbit

    In a gravitational two-body problem with negative energy, both bodies follow similar elliptic orbits with the same orbital period around their common barycenter. The relative position of one body with respect to the other also follows an elliptic orbit. Examples of elliptic orbits include Hohmann transfer orbits, Molniya orbits, and tundra orbits.

  8. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    For example, simple atmospheric drag is another complicating factor for objects in low Earth orbit. These rules of thumb are decidedly inaccurate when describing two or more bodies of similar mass, such as a binary star system (see n-body problem). Celestial mechanics uses more general rules applicable to a wider variety of situations. Kepler's ...

  9. Kepler orbit - Wikipedia

    en.wikipedia.org/wiki/Kepler_orbit

    In celestial mechanics, a Kepler orbit (or Keplerian orbit, named after the German astronomer Johannes Kepler) is the motion of one body relative to another, as an ellipse, parabola, or hyperbola, which forms a two-dimensional orbital plane in three-dimensional space. A Kepler orbit can also form a straight line.