When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. S band - Wikipedia

    en.wikipedia.org/wiki/S_band

    The largest use of this band is by Wi-Fi networks; the IEEE 802.11b and 802.11g standards use the 2.4 GHz section of the S band. These are the most widely used computer networks in the world, used globally in home and small office networks to link desktop and laptop computers, tablet computers, smartphones, smart TVs, printers, and smart speakers together and to a wireless router to connect ...

  3. Electromagnetic spectrum - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_spectrum

    Radiation of each frequency and wavelength (or in each band) has a mix of properties of the two regions of the spectrum that bound it. For example, red light resembles infrared radiation, in that it can excite and add energy to some chemical bonds and indeed must do so to power the chemical mechanisms responsible for photosynthesis and the ...

  4. Free-space path loss - Wikipedia

    en.wikipedia.org/wiki/Free-space_path_loss

    Free-space loss increases with the square of distance between the antennas because the radio waves spread out by the inverse square law and decreases with the square of the wavelength of the radio waves. The FSPL is rarely used standalone, but rather as a part of the Friis transmission formula, which includes the gain of antennas. [3]

  5. Wavelength - Wikipedia

    en.wikipedia.org/wiki/Wavelength

    The wavelength of a sine wave, λ, can be measured between any two points with the same phase, such as between crests (on top), or troughs (on bottom), or corresponding zero crossings as shown. In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats.

  6. Wavenumber - Wikipedia

    en.wikipedia.org/wiki/Wavenumber

    A spectroscopic wavenumber can be converted into energy per photon E by Planck's relation: = ~. It can also be converted into wavelength of light: = ~, where n is the refractive index of the medium. Note that the wavelength of light changes as it passes through different media, however, the spectroscopic wavenumber (i.e., frequency) remains ...

  7. Spectral band - Wikipedia

    en.wikipedia.org/wiki/Spectral_band

    Spectral bands have constant density, and when the bands overlap, the corresponding densities are added. Band spectra is the name given to a group of lines that are closely spaced and arranged in a regular sequence that appears to be a band. It is a colored band, separated by dark spaces on the two sides and arranged in a regular sequence.

  8. Spectral flux density - Wikipedia

    en.wikipedia.org/wiki/Spectral_flux_density

    The relative spectral flux density is also useful if we wish to compare a source's flux density at one wavelength with the same source's flux density at another wavelength; for example, if we wish to demonstrate how the Sun's spectrum peaks in the visible part of the EM spectrum, a graph of the Sun's relative spectral flux density will suffice.

  9. Emission spectrum - Wikipedia

    en.wikipedia.org/wiki/Emission_spectrum

    The wavelength (or equivalently, frequency) of the photon is determined by the difference in energy between the two states. These emitted photons form the element's spectrum. The fact that only certain colors appear in an element's atomic emission spectrum means that only certain frequencies of light are emitted.