Search results
Results From The WOW.Com Content Network
A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed number called the common ratio. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3.
The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .
There were two examination papers: one which tested topics in Pure Mathematics, and one which tested topics in Mechanics and Statistics. It was discontinued in 2014 and replaced with GCSE Further Mathematics—a new qualification whose level exceeds both those offered by GCSE Mathematics, and the analogous qualifications offered in England. [4]
It can be shown that all Pythagorean triples can be obtained, with appropriate rescaling, from the basic Platonic sequence (a, (a 2 − 1)/2 and (a 2 + 1)/2) by allowing a to take non-integer rational values. If a is replaced with the fraction m/n in the sequence, the result is equal to the 'standard' triple generator (2mn, m 2 − n 2, m 2 + n ...
An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence. Arithmetico-geometric sequences and series arise in various applications, such as the computation of expected values in probability theory , especially in Bernoulli processes .
2D-plot: As a generalization of a Boolean matrix, a relation on the –infinite– set R of real numbers can be represented as a two-dimensional geometric figure: using Cartesian coordinates, draw a point at (x,y) whenever (x,y) ∈ R. A transitive [c] relation R on a finite set X may be also represented as
In mathematics, the Euler sequence is a particular exact sequence of sheaves on n-dimensional projective space over a ring. It shows that the sheaf of relative differentials is stably isomorphic to an ( n + 1 ) {\displaystyle (n+1)} -fold sum of the dual of the Serre twisting sheaf .
It is useful to figure out which summation methods produce the geometric series formula for which common ratios. One application for this information is the so-called Borel-Okada principle: If a regular summation method assigns = to / for all in a subset of the complex plane, given certain restrictions on , then the method also gives the analytic continuation of any other function () = = on ...