Search results
Results From The WOW.Com Content Network
Latent heat (also known as latent energy or heat of transformation) is energy released or absorbed, by a body or a thermodynamic system, during a constant-temperature process—usually a first-order phase transition, like melting or condensation. Latent heat can be understood as hidden energy which is supplied or extracted to change the state ...
In 2015, Yin et al. developed an analytical expression for LCL height using Lambert-W function under the assumption of constant latent heat of vaporization. [1] Separately, in 2017, David Romps derived the explicit and analytic expression for the LCL and the analogous lifting deposition level (LDL) assuming only constant heat capacities: [2]
Temperature-dependency of the heats of vaporization for water, methanol, benzene, and acetone. In thermodynamics, the enthalpy of vaporization (symbol ∆H vap), also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy that must be added to a liquid substance to transform a quantity of that substance into a gas.
During condensation, the latent heat of vaporization must be released. The amount of heat is the same as that absorbed during vaporization at the same fluid pressure. [24] There are several types of condensation: Homogeneous condensation, as during the formation of fog. Condensation in direct contact with subcooled liquid.
In systems involving heat transfer, a condenser is a heat exchanger used to condense a gaseous substance into a liquid state through cooling. In doing so, the latent heat is released by the substance and transferred to the surrounding environment. Condensers are used for efficient heat rejection in many industrial systems.
Another definition of the LHV is the amount of heat released when the products are cooled to 150 °C (302 °F). This means that the latent heat of vaporization of water and other reaction products is not recovered. It is useful in comparing fuels where condensation of the combustion products is impractical, or heat at a temperature below 150 ...
The latent heat release from condensation is the determinant between significant convection and almost no convection at all. The fact that air is generally cooler during winter months, and therefore cannot hold as much water vapor and associated latent heat, is why significant convection (thunderstorms) are infrequent in cooler areas during ...
In the equation above, L c (T) is the latent heat of condensation of water at temperature T, m a is the mass of the air in the cloud chamber, c p is the specific heat of dry air at constant pressure and is the change in the temperature of the air due to latent heat.