Search results
Results From The WOW.Com Content Network
These processes typically produce hydrogen sulfide as a byproduct, which can go on to serve as an electron donor in sulfur oxidation. [11] Sulfate reduction by sulfate-reducing bacteria is dissimilatory; the purpose of reducing the sulfate is to produce energy, and the sulfide is excreted.
The important sulfur cycle is a biogeochemical cycle in which the sulfur moves between rocks, waterways and living systems. It is important in geology as it affects many minerals and in life because sulfur is an essential element (), being a constituent of many proteins and cofactors, and sulfur compounds can be used as oxidants or reductants in microbial respiration. [1]
With a 2 ton/day production facility located in Wausau, Wisconsin, AST can also make high quality pulp, glucose, fructose and lignin. With the AST process, lignocellulosic biomass is treated with sulfuric acid, water, butanol and other organic solvents, water, an organic or inorganic acid, and catalyst for one to three hours at 150 to 200 °C.
To fully oxidize the equivalent of one glucose molecule, two acetyl-CoA must be metabolized by the Krebs cycle. Two low-energy waste products, H 2 O and CO 2, are created during this cycle. [12] [13] The citric acid cycle is an 8-step process involving 18 different enzymes and co-enzymes.
Instead of releasing oxygen gas while fixing carbon dioxide as in photosynthesis, hydrogen sulfide chemosynthesis produces solid globules of sulfur in the process. Mechanism of Action In deep sea environments, different organisms have been observed to have the ability to oxidize reduced compounds such as hydrogen sulfide. [ 7 ]
Some Bacteria and Archaea can aerobically oxidize elemental sulfur to sulfuric acid. [3] Acidithiobacillus ferrooxidans and Thiobacillus thioparus can oxidize sulfur to sulfite by means of an oxygenase enzyme, although it is thought that an oxidase could be used as well as an energy saving mechanism. [58]
Venenivibrio stagnispumantis gains energy by oxidizing hydrogen gas.. In biochemistry, chemosynthesis is the biological conversion of one or more carbon-containing molecules (usually carbon dioxide or methane) and nutrients into organic matter using the oxidation of inorganic compounds (e.g., hydrogen gas, hydrogen sulfide) or ferrous ions as a source of energy, rather than sunlight, as in ...
The lead chamber process was an industrial method used to produce sulfuric acid in large quantities. It has been largely supplanted by the contact process.. In 1746 in Birmingham, England, John Roebuck began producing sulfuric acid in lead-lined chambers, which were stronger and less expensive and could be made much larger than the glass containers that had been used previously.