Search results
Results From The WOW.Com Content Network
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.
The following table gives Reynolds number Re, Darcy friction factor f D, flow rate Q, and velocity V such that hydraulic slope S = h f / L = 0.01, for a variety of nominal pipe (NPS) sizes. Volumetric Flow Q where Hydraulic Slope S is 0.01, for selected Nominal Pipe Sizes (NPS) in PVC [ 14 ] [ 15 ]
The phenomenological Colebrook–White equation (or Colebrook equation) expresses the Darcy friction factor f as a function of Reynolds number Re and pipe relative roughness ε / D h, fitting the data of experimental studies of turbulent flow in smooth and rough pipes.
If the value of the friction factor is 0.064, then the Darcy friction factor is plotted in the Moody diagram. Note that the nonzero digits in 0.064 are the numerator in the formula for the laminar Darcy friction factor: f D = 64 / Re . If the value of the friction factor is 0.016, then the Fanning friction factor is plotted in the Moody ...
The conversion factor k was chosen so that the values for C were the same as in the Chézy formula for the typical hydraulic slope of S=0.001. [9] The value of k is 0.001 −0.04. [10] Typical C factors used in design, which take into account some increase in roughness as pipe ages are as follows: [11]
In this form the law approximates the Darcy friction factor, the energy (head) loss factor, friction loss factor or Darcy (friction) factor Λ in the laminar flow at very low velocities in cylindrical tube. The theoretical derivation of a slightly different form of the law was made independently by Wiedman in 1856 and Neumann and E. Hagenbach ...
When the pipes have certain roughness <, this factor must be taken in account when the Fanning friction factor is calculated. The relationship between pipe roughness and Fanning friction factor was developed by Haaland (1983) under flow conditions of 4 ⋅ 10 4 < R e < 10 7 {\displaystyle 4\centerdot 10^{4}<Re<10^{7}}
Fanning friction factor: f: John T. Fanning: fluid mechanics (fraction of pressure losses due to friction in a pipe; 1/4th the Darcy friction factor) [9] Froude number: Fr = William Froude: fluid mechanics (wave and surface behaviour; ratio of a body's inertia to gravitational forces) Galilei number: Ga