Ad
related to: steps of cross sectional study
Search results
Results From The WOW.Com Content Network
In medical research, epidemiology, social science, and biology, a cross-sectional study (also known as a cross-sectional analysis, transverse study, prevalence study) is a type of observational study that analyzes data from a population, or a representative subset, at a specific point in time—that is, cross-sectional data. [definition needed]
In statistics and econometrics, a cross-sectional regression is a type of regression in which the explained and explanatory variables are all associated with the same single period or point in time. This type of cross-sectional analysis is in contrast to a time-series regression or longitudinal regression in which the variables are considered ...
In statistics and econometrics, cross-sectional data is a type of data collected by observing many subjects (such as individuals, firms, countries, or regions) at a single point or period of time. Analysis of cross-sectional data usually consists of comparing the differences among selected subjects, typically with no regard to differences in time.
In a typical experimental study, there will be at least one "experimental" condition (e.g., "treatment") and one "control" condition ("no treatment"), but the appropriate method of grouping may depend on factors such as the duration of measurement phase and participant characteristics: Cohort study; Cross-sectional study; Cross-sequential study
Panel (data) analysis is a statistical method, widely used in social science, epidemiology, and econometrics to analyze two-dimensional (typically cross sectional and longitudinal) panel data. [1] The data are usually collected over time and over the same individuals and then a regression is run over these two dimensions.
Cross sectional view of sequences. To describe such data, we may look at the columns and consider the cross-sectional state distributions at the successive positions. The chronogram or density plot of a set of sequences renders these successive cross-sectional distributions.
Epidemiological (and other observational) studies typically highlight associations between exposures and outcomes, rather than causation. While some consider this a limitation of observational research, epidemiological models of causation (e.g. Bradford Hill criteria) [7] contend that an entire body of evidence is needed before determining if an association is truly causal. [8]
Rather than studying particular individuals across that whole period of time (e.g. 20–60 years) as in a longitudinal design, or multiple individuals of different ages at one time (e.g. 20, 25, 30, 35, 40, 45, 50, 55, and 60 years) as in a cross-sectional design, the researcher chooses a smaller time window (e.g. 20 years) to study multiple ...