Search results
Results From The WOW.Com Content Network
Great-circle navigation or orthodromic navigation (related to orthodromic course; from Ancient Greek ορθός (orthós) 'right angle' and δρόμος (drómos) 'path') is the practice of navigating a vessel (a ship or aircraft) along a great circle.
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
Few flight planning systems calculate the actual takeoff weight; instead, the fuel used for taking off is counted as part of the fuel used for climbing up to the normal cruise height. Landing weight is the weight of an aircraft as it lands at the destination. This is the brake release weight minus the trip fuel burned.
The point can be illustrated with an east–west passage over 90 degrees of longitude along the equator, for which the great circle and rhumb line distances are the same, at 10,000 kilometres (5,400 nautical miles). At 20 degrees north the great circle distance is 9,254 km (4,997 nmi) while the rhumb line distance is 9,397 km (5,074 nmi), about ...
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.
An airfield traffic pattern is a standard path followed by aircraft when taking off or landing while maintaining visual contact with the airfield. At an airport, the pattern (or circuit) is a standard path for coordinating air traffic. It differs from "straight-in approaches" and "direct climb-outs" in that an aircraft using a traffic pattern ...
Discover the latest breaking news in the U.S. and around the world — politics, weather, entertainment, lifestyle, finance, sports and much more.
Routing efficiency may be defined as the great-circle distance divided by the actual route distance = Off-nominal temperatures may be accounted for with a temperature efficiency factor η temp {\displaystyle \eta _{\text{temp}}} (e.g. 99% at 10 deg C above International Standard Atmosphere (ISA) temperature).