When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Forecast skill - Wikipedia

    en.wikipedia.org/wiki/Forecast_skill

    In this case, a perfect forecast results in a forecast skill metric of zero, and skill score value of 1.0. A forecast with equal skill to the reference forecast would have a skill score of 0.0, and a forecast which is less skillful than the reference forecast would have unbounded negative skill score values. [4] [5]

  3. Brier score - Wikipedia

    en.wikipedia.org/wiki/Brier_score

    If the forecast is 100% (= 1) and it rains, then the Brier Score is 0, the best score achievable. If the forecast is 100% and it does not rain, then the Brier Score is 1, the worst score achievable. If the forecast is 70% (= 0.70) and it rains, then the Brier Score is (0.70−1) 2 = 0.09.

  4. Scoring rule - Wikipedia

    en.wikipedia.org/wiki/Scoring_rule

    The quadratic scoring rule is a strictly proper scoring rule (,) = = =where is the probability assigned to the correct answer and is the number of classes.. The Brier score, originally proposed by Glenn W. Brier in 1950, [4] can be obtained by an affine transform from the quadratic scoring rule.

  5. Calibration (statistics) - Wikipedia

    en.wikipedia.org/wiki/Calibration_(statistics)

    There are two main uses of the term calibration in statistics that denote special types of statistical inference problems. Calibration can mean a reverse process to regression, where instead of a future dependent variable being predicted from known explanatory variables, a known observation of the dependent variables is used to predict a corresponding explanatory variable; [1]

  6. Forecast verification - Wikipedia

    en.wikipedia.org/wiki/Forecast_verification

    To determine the value of a forecast, we need to measure it against some baseline, or minimally accurate forecast. There are many types of forecast that, while producing impressive-looking skill scores, are nonetheless naive. A "persistence" forecast can still rival even those of the most sophisticated models. An example is: "What is the ...

  7. Mean absolute scaled error - Wikipedia

    en.wikipedia.org/wiki/Mean_absolute_scaled_error

    Asymptotic normality of the MASE: The Diebold-Mariano test for one-step forecasts is used to test the statistical significance of the difference between two sets of forecasts. [ 5 ] [ 6 ] [ 7 ] To perform hypothesis testing with the Diebold-Mariano test statistic, it is desirable for D M ∼ N ( 0 , 1 ) {\displaystyle DM\sim N(0,1)} , where D M ...

  8. Symmetric mean absolute percentage error - Wikipedia

    en.wikipedia.org/wiki/Symmetric_mean_absolute...

    where A t is the actual value and F t is the forecast value. The absolute difference between A t and F t is divided by half the sum of absolute values of the actual value A t and the forecast value F t. The value of this calculation is summed for every fitted point t and divided again by the number of fitted points n.

  9. Sensitivity analysis - Wikipedia

    en.wikipedia.org/wiki/Sensitivity_analysis

    For calibration of models with large number of parameters, by focusing on the sensitive parameters. [5] To identify important connections between observations, model inputs, and predictions or forecasts, leading to the development of better models. [6] [7]