Search results
Results From The WOW.Com Content Network
Assume that f is a scalar, vector, or tensor field defined on a surface S. To find an explicit formula for the surface integral of f over S, we need to parameterize S by defining a system of curvilinear coordinates on S, like the latitude and longitude on a sphere. Let such a parameterization be r(s, t), where (s, t) varies in some region T in ...
Integration by parts is a heuristic rather than a purely mechanical process for solving integrals; given a single function to integrate, the typical strategy is to carefully separate this single function into a product of two functions u(x)v(x) such that the residual integral from the integration by parts formula is easier to evaluate than the ...
More precisely, the divergence theorem states that the surface integral of a vector field over a closed surface, which is called the "flux" through the surface, is equal to the volume integral of the divergence over the region enclosed by the surface. Intuitively, it states that "the sum of all sources of the field in a region (with sinks ...
In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: = = (, , ) (, , ) = + +.. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.
It equates the surface integral of the curl of a vector field to the above line integral taken around the boundary of the surface. Another way one can define the curl vector of a function F at a point is explicitly as the limiting value of a vector-valued surface integral around a shell enclosing p divided by the volume enclosed, as the shell ...
An example of a 1-dimensional manifold is an interval [a, b], and intervals can be given an orientation: they are positively oriented if a < b, and negatively oriented otherwise. If a < b then the integral of the differential 1-form f(x) dx over the interval [a, b] (with its natural positive orientation) is
The classical Stokes' theorem relates the surface integral of the curl of a vector field over a surface in Euclidean three-space to the line integral of the vector field over its boundary. It is a special case of the general Stokes theorem (with n = 2 {\displaystyle n=2} ) once we identify a vector field with a 1-form using the metric on ...
Simple examples. A simple example of a regular surface is given by the 2-sphere {(x, y, z) | x 2 + y 2 + z 2 = 1}; this surface can be covered by six Monge patches (two of each of the three types given above), taking h(u, v) = ± (1 − u 2 − v 2) 1/2. It can also be covered by two local parametrizations, using stereographic projection.